

Funded by the European Union

SEEDS VOCs and links to ozone

Natural emissions by vegetation are currently poorly constrained

They are a large source of uncertainty in air quality and climate models

Sinderlarova et al. (2022)

Global annual volatile organic compound (VOC) emissions

Sentinel-5P TROPOMI instrument

NOX

-

We employ an inverse modelling strategy:

Start from observed formaldehyde data by TROPOMI and infer the biogenic emissions

TROPOMI formaldehyde (HCHO) vertical columns

anthropogenic emissions

fire emissions

TROPOMI HCHO columns

Inversion constrained by weekly-averages

MAGRITTE chemistry-transport model and its adjoint

Iterative minimization algorithm

Top-down biogenic isoprene fluxes

Top-down biomass burning fluxes

Top-down anthropogenic fluxes

MEGAN-MOHYCAN a priori biogenic emissions
 State-of-the-art BVOC oxidation included in the model

Formaldehyde columns in summer over Europe

MAGRITTE model (a priori)

MAGRITTE model (optimized)

Isoprene emissions

A priori emissions

Optimized (top-down) emissions

Inversion at:

- $0.5^{\circ} \times 0.5^{\circ}$ spatial resolution
- Weekly temporal resolution

Public dataset provided at:

- $0.1^{\circ} \times 0.1^{\circ}$ spatial resolution
- Daily temporal resolution
- → https://www.seedsproject.eu/

Modeled ozone concentrations near the surface in July 2019

Effect of VOC emissions on air quality during a heatwave in Berlin

The simulated contribution of VOC emissions from vegetation can reach 60% during hot summer days in urban environments

Churkina et al. (2017)

Increases in BVOCs due to urban greening trends are compensating the reduction of anthropogenic VOC emissions

Gu et al. (2021)

Low BVOC emitters	Medium BVOC emitters	High BVOC emitters
Beech Ash	Chestnut Linden	Oak Willow
Hornbeam	Mango Black locust	Poplar Aspen
Acacia Cedar	Bamboo Juniper Spruce	Eucalyptus Plane tree
Cypress	Pine	Lily tree
Pine	Palm Fir Maple	Sweetgum

Stronger BVOC emissions

Kesselmeier & Staudt (1999); Geron et al. (2001); Aydin et al. (2014)

Overview

SEEDS provides up-to-date top-down biogenic emissions based on TROPOMI HCHO data

- Covering 2018—2020
 → 2021—2022 on the way
- Dataset provided at $0.1^\circ \times 0.1^\circ$ spatial resolution and daily temporal resolution

Funded by the European Union

