

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004318

Ammonia (NH₃) emissions

Jieying Ding, Ronald van der A, Henk Eskes

KNMI

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waters

Emission estimation method:

Inversion technique using satellite observations and a chemical transport model:

DECSO (see presentation from Ronald van der A)

NH3 emissions from CRIS

Ammonia (NH3)

The contribution made by different sectors to emissions of ammonia in 2011. (Figure from European Environment Agency)

NH3 observed from CrIS in 2020

1e15 molec/cm2

F

Ammonia sources from the European Pollutant Release and Transfer Register (E-PRTR)

DECSO Daily Emissions Constrained by Satellite Observations

- It is fast: one model run per assimilation step of 1 day
- No a priori information needed: unknown sources will become visible.
- Full error estimation of new emission inventory
- Used for daily NO_x and NH_3 emissions
- DECSO v6.1
- Model: CHIMERE 2020 r3
- Observations:
 - CrIS NH3 (provided by Mark Shephard^{*})

*Environment and Climate Change Canada

State vector forecast $\mathbf{x}^{f}(t_{i+1}) = M_{i} [\mathbf{x}^{a}(t_{i})]$ Error covariance forecast $\mathbf{P}^{f}(t_{i+1}) = \mathbf{M}_{i} \mathbf{P}^{a}(t_{i}) \mathbf{M}_{i}^{T} + \mathbf{Q}(t_{i})$ Kalman gain matrix $\mathbf{F}^{f}(t_{i+1}) = \mathbf{M}_{i} \mathbf{P}^{f}(t_{i}) \mathbf{H}_{i}^{T} [\mathbf{H}_{i} \mathbf{P}^{f}(t_{i}) \mathbf{H}_{i}^{T} + \mathbf{R}_{i}]^{-1}$ State vector analysis $\mathbf{x}^{a}(t_{i}) = \mathbf{x}^{f}(t_{i}) + \mathbf{K}_{i}(\mathbf{y}_{i}^{o} - H_{i} [\mathbf{x}^{f}(t_{i})])$ Error covariance analysis $\mathbf{P}^{a}(t_{i}) = (\mathbf{I} - \mathbf{K}_{i} \mathbf{H}_{i}) \mathbf{P}^{f}(t_{i})$
--

DECSO (Daily Emission estimates Constrained by Satellite Observation)

NH₃ emission estimates

Ę

NOx emissions updated daily using TROPOMI

NOx emissions from bottom-up inventory (no daily updates)

Ę

Number of livestock

Model simulations vs In-situ measurements

CHIMERE model simulations Emissions: HTAP vs DECSO

Summer months

Conclusions

- The NH₃ emissions from DECSO are comparable with bottom-up emissions/ reported NH₃ emissions for country totals.
- The spatial distribution of NH_3 emissions from DECSO is reasonable. The regions with high NH_3 emissions are well detected.
- The seasonality of NH_3 emissions is different among bottom-up inventories. The results of DECSO are among the variation.
- The comparison with in-situ observations shows that model simulations using DECSO-NH3 with in-situ observations beter captured the seasonal changes of NH₃ than using HTAP.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004318

Thank you! Questions?

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waters

