SEEDS - Sentinel EO-based Emission and Deposition Service

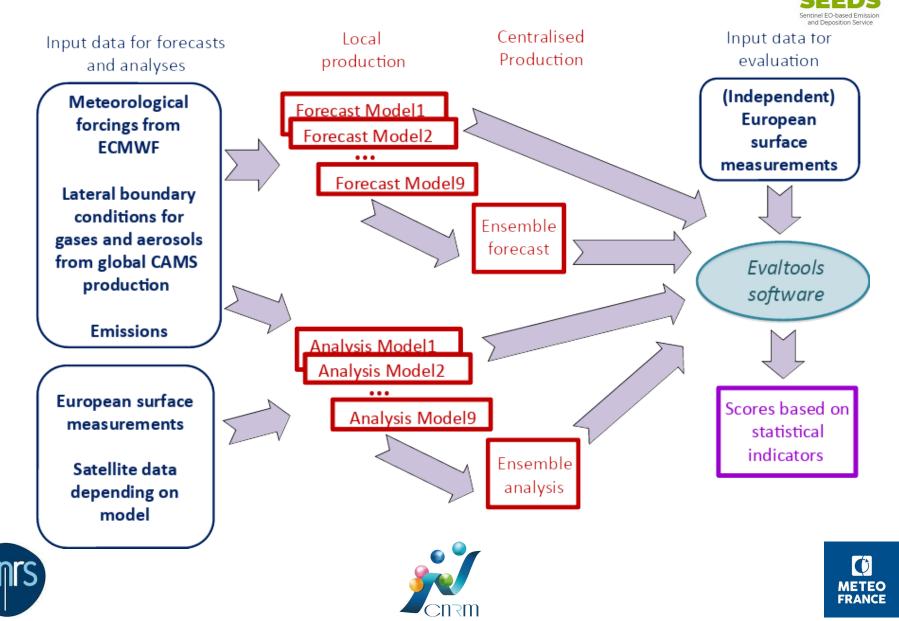
2nd SEEDS General Assembly and Stakeholder Engagement Meeting

Added value of deposition products to the CAMS operational system

Joaquim Arteta, Nicolas Frébourg and Virginie Marécal CNRM - Météo-France

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waters

WP5: general objective


Assessment of the impact of the SEEDS products (WP1, WP2, WP3 and WP4) on the Copernicus Atmosphere Monitoring Service (CAMS) operational regional analyses and forecasts

General design of the CAMS regional production

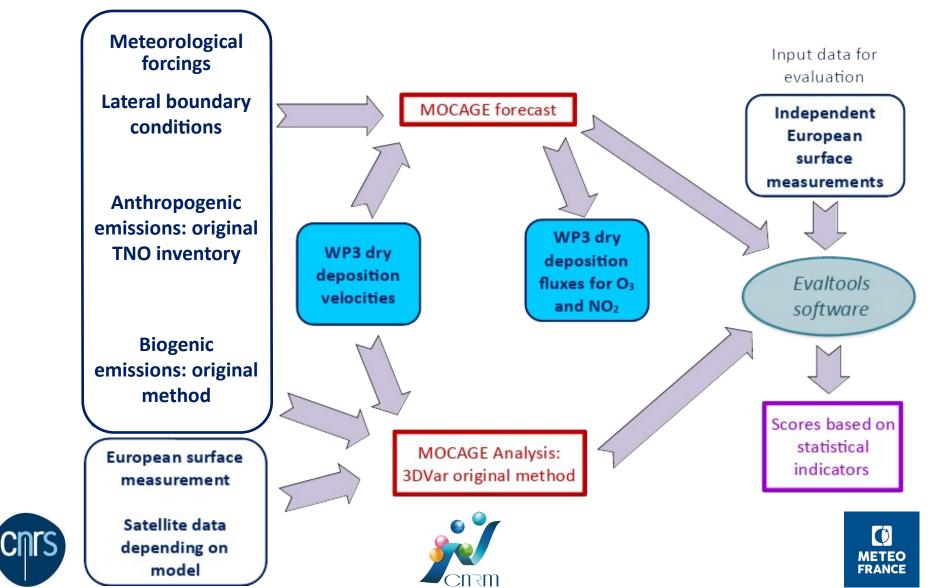
Testing methods

To test the added value of the SEEDS deposition products:

- Use of the CAMS2-40 production framework:
 - Input data for model and data assimilation system, except those provided in SEEDS
 - Evaltools free software developed by CNRM/Meteo-France for the evaluation of the forecast and analysis performances using the operational selection of measurements

Focus on the 4 main air quality pollutants, ozone, NO₂, PM10 and PM2.5 that are also affected directly or indirectly by dry deposition of ozone and nitrogen compounds.

- Use MOCAGE model that is the model developed by CNRM/Météo-France together with CERFACS for its data assimilation system
 - MOCAGE is one of the models of the CAMS regional operational ensemble produced by Meteo-France in CAMS2-40
 - MOCAGE performances are representative of the mean performances of the 9 models of the ensemble



General design of the testing method

and Deposition Servi

Input data for forecast/analysis

Configuration used to test products

Current MOCAGE setup for CAMS2-40 (U7)

- Forecasts/analyses from ECMWF + forecasts/analyses chemical BC
- MOCAGE forecast initialized from an assimilation cycle (satellite obs)
- MOCAGE cycle mo11 used
- Regional Emissions from CAMS-REG-APv5.1 (2018)
- Global domain : Arpege 1x1° + CAMS-GLOB-ANT/CAMS-GLOB-BIO/CAMS-GLOB-OCE (2020)

Selected MOCAGE setup for SEEDS (U0)

- Forecasts/analyses from ECMWF + forecasts/analyses chemical BC
- MOCAGE forecast initialized from previous forecast
- MOCAGE cycle mo11 used (cycle mo07 in 2019)
- Regional Emissions from CAMS-REG-APv2.2 (2015)
- Global domain : Arpege 1x1° + MACCity (2016)/RCP60 (2016)/MEGAN-MACC (2010)
 - MOCAGE o-suite in 2019 (except for source code)

Deposition velocities (cf. P.Hamer's presentation)

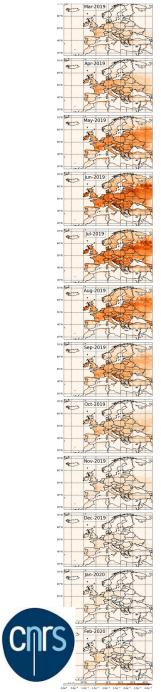
Analysis runs, meteorologically driven by IFS analyses

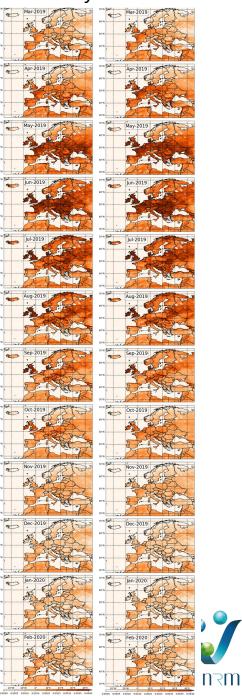
- MOCAGE with SUMO-Wesely
- MOCAGE with SURFEX-Wesely Open-loop
- MOCAGE with SURFEX-Wesely EKF
- MOCAGE with SURFEX-EMEP Open-loop
- MOCAGE with SURFEX-EMEP EKF

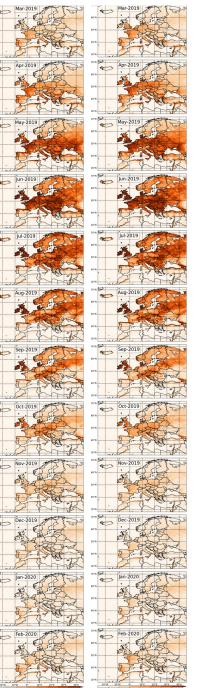
Forecast runs, meteorologically driven by IFS forecasts

- MOCAGE with SUMO-Wesely
- MOCAGE with SURFEX-EMEP Open-loop
- MOCAGE with SURFEX-EMEP EKF

Deposition velocities (analyses) (cf. P.Hamer's presentation)

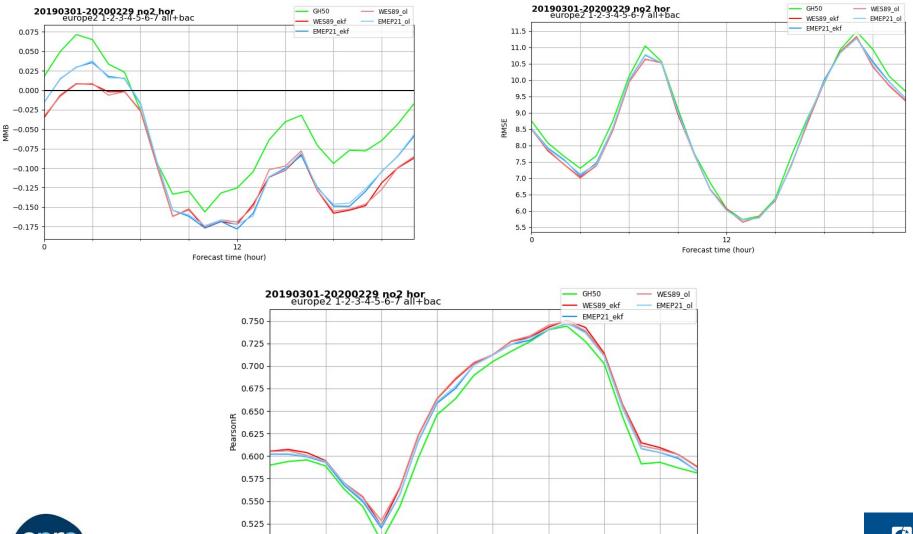





Reference

Wesely OL/EKF

EMEP OL/EKF



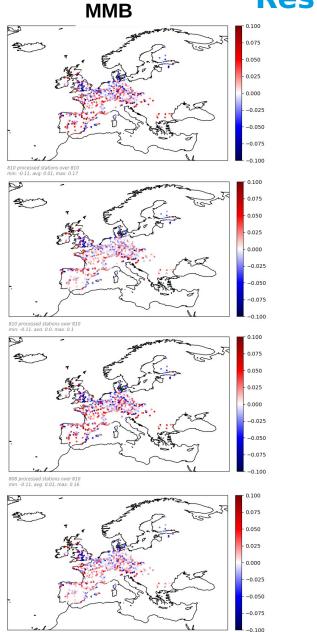
 NO_2

Results in Analysis chain - NO₂

12

Forecast time (hour)

0.500

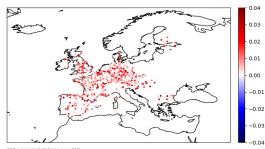

0

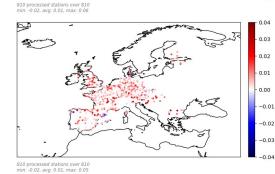
Sentinel EO-based Emission and Deposition Service

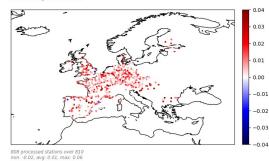
Results in Analysis chain - NO₂

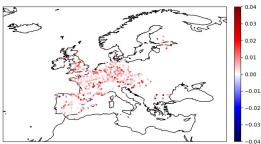
(*৫ি*ন) Correlation

810 processed stations over 810


min: -0.1, avg: 0.0, max: 0.1


Wesely-OL - Ref


EMEP-OL - Ref


Wesely-EKF - Ref

810 processed stations over 810 min: -0.02, avg: 0.01, max: 0.05

Results in Analysis chain - NO₂

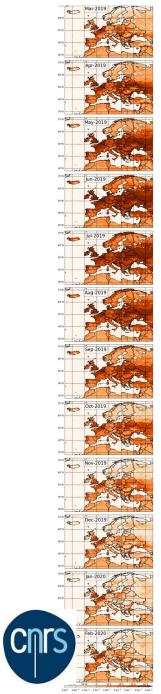
Success ratio : False alarm ratio : Bias score : Wesely > EMEP > Reference Wesely < EMEP < Reference Reference > EMEP > Wesely

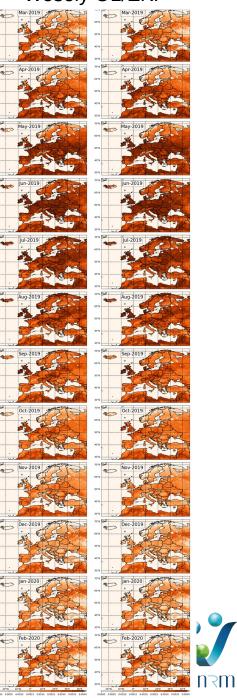
(Target of 1) (Target of 0) (Target of 1)

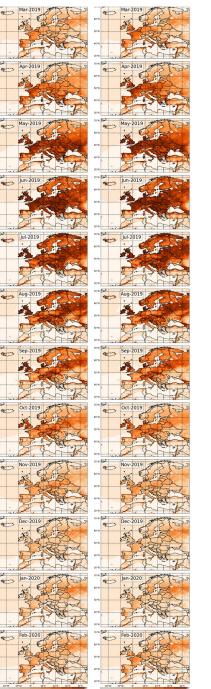
threshold $= 50.0$					
	accuracy	bias_score	$success_ratio$	hit_rate	${\it false_alarm_ratio}$
GH50	0.86	0.6	0.5	0.3	0.5
WES89_ekf	0.87	0.53	0.52	0.28	0.48
EMEP21_ekf	0.86	0.55	0.51	0.28	0.49
WES89_ol	0.87	0.53	0.52	0.28	0.48
EMEP21_ol	0.86	0.56	0.51	0.28	0.49
threshold = 30.0					
	accuracy	bias_score	$success_ratio$	hit_rate	$false_alarm_ratio$
GH50	0.72	0.61	0.77	0.47	0.23
WES89_ekf	0.72	0.57	0.79	0.45	0.21
EMEP21_ekf	0.72	0.58	0.79	0.46	0.21
WES89_ol	0.72	0.57	0.79	0.45	0.21
EMEP21_ol	0.72	0.58	0.79	0.46	0.21

=> SEEDS products:

- improve the detection of NO_2 events in analyses

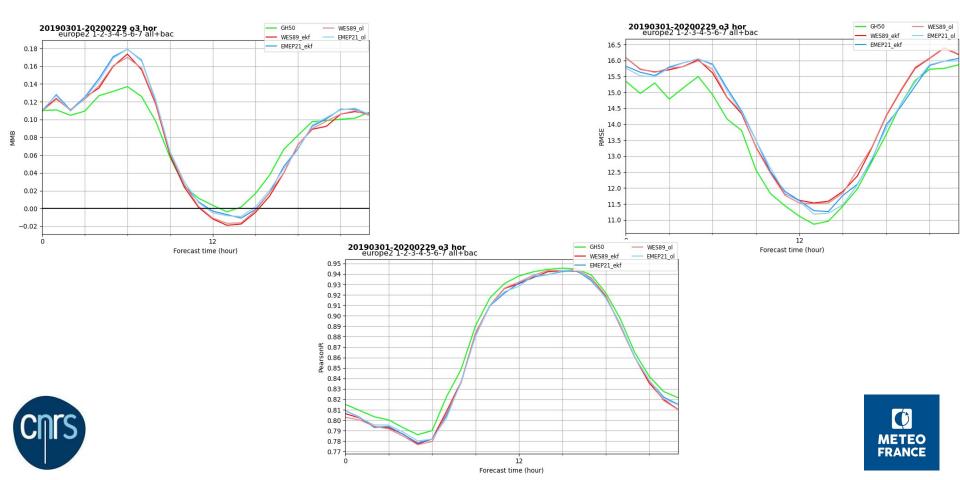

- degrade NO₂ bias



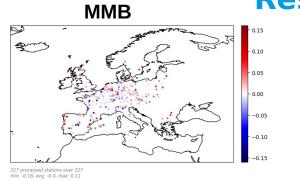

Reference

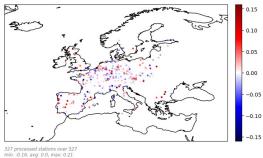
Wesely OL/EKF

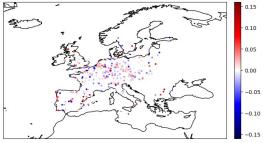
EMEP OL/EKF

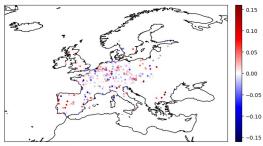

OZONE

Results in Analysis chain - O₃

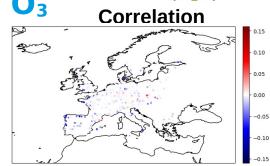

Median station score of all stations over a 24h forecast


- Reference have better score (RMSE and Correlation mainly)
 - smoother deposition for reference = better mean scores (lots of background stations)
 - EKF and OL have low impact. (nearly overlapping curves)




Results in Analysis chain - O₃

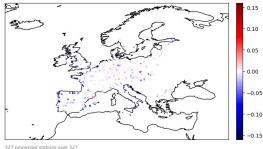
327 processed stations over 327 min: -0.17, avg: -0.0, max: 0.12



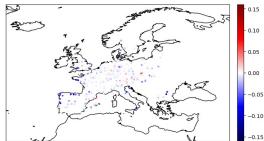
Wesely-OL - Ref

EMEP-OL - Ref


Wesely-EKF - Ref



BEA


327 processed stations over 327 min: -0.13, avg: -0.01, max: 0.07

327 processed stations over 327 min: -0.14, avg: -0.01, max: 0.06

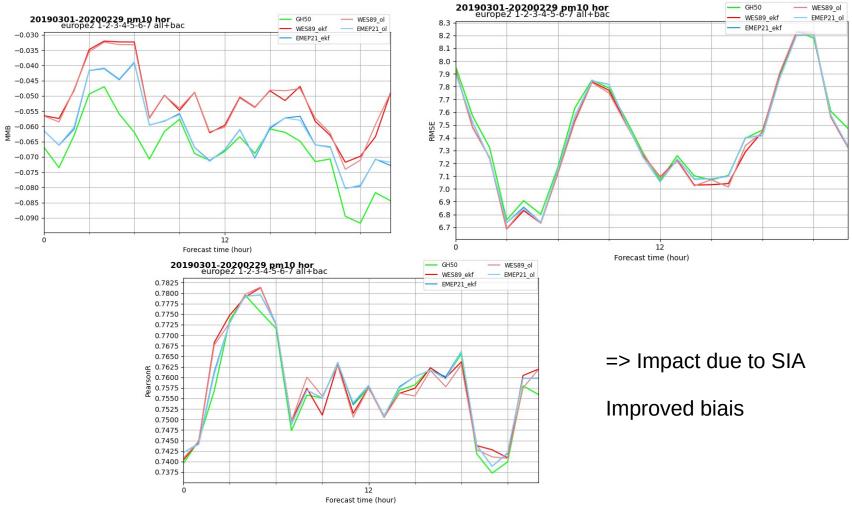
327 processed stations over 327 min: -0.15, avg: -0.01, max: 0.06

327 processed stations over 327 min: -0.15, avg: 0.0, max: 0.22

Results in Analysis chain

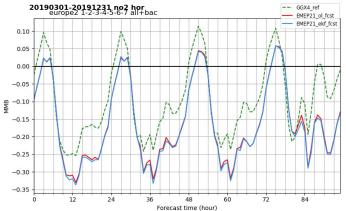
Success ratio :	EMEP > Wesely > Reference	(Target of 1)
False alarm ratio :	EMEP < Wesely < Reference	(Target of 0)
Bias score :	Reference > EMEP > Wesely	(Target of 1)

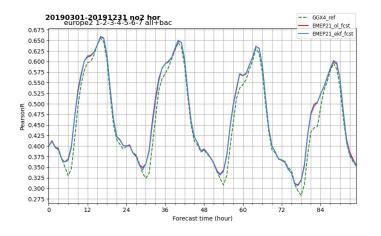
threshold = 180.0					
	$\operatorname{accuracy}$	bias_score	$success_ratio$	hit_rate	${\it false_alarm_ratio}$
GH50	0.99	0.71	0.6	0.43	0.4
WES89_ekf	0.99	0.59	0.67	0.39	0.33
EMEP21_ekf	0.99	0.55	0.7	0.39	0.3
WES89_ol	0.99	0.58	0.69	0.39	0.31
EMEP21_ol	0.99	0.54	0.7	0.37	0.3
threshold = 150.0					
		bles seens	average actio	hit mate	false_alarm_ratio
	accuracy	bias_score	success_ratio	hit_rate	faise_alarm_ratio
GH50	0.96	0.7	0.73	0.51	0.27
GH50 WES89_ekf					
	0.96	0.7	0.73	0.51	0.27
WES89_ekf	0.96 0.96	$0.7 \\ 0.62$	0.73 0.76	$0.51 \\ 0.47$	0.27 0.24


=> SEEDS products:

- improve the quality of representation of more extreme ozone events - degrade O_3 bias

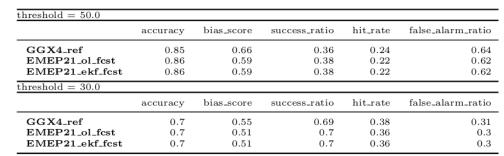
Results in Analysis chain - PM10





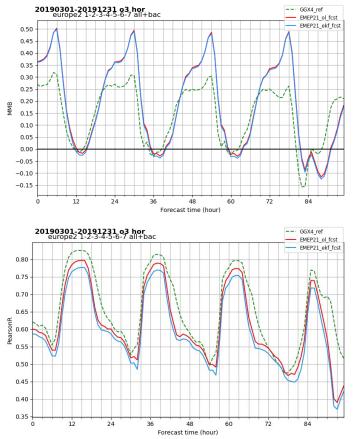
Sentinel FO-based Emission

Results in Forecast chain - NO₂



=> SEEDS products:

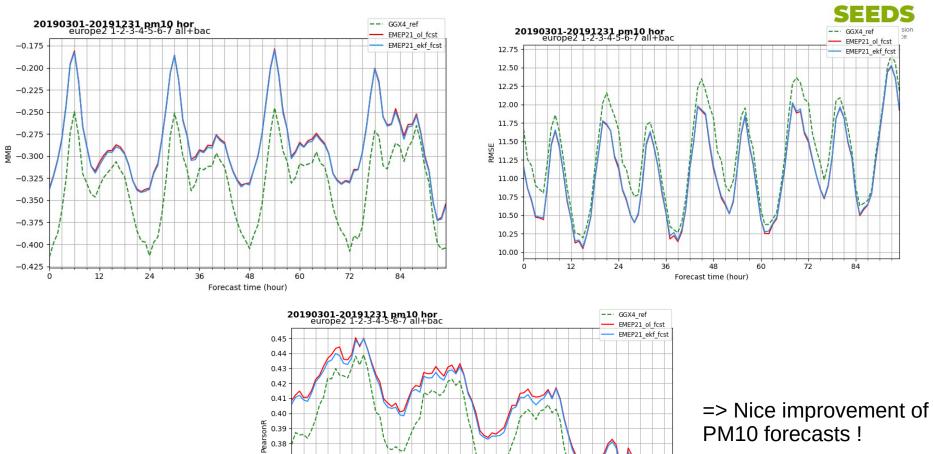
slightly improve the quality of NO₂
predictions, during the 4 days of forecasting
degrade bias


threshold = 50.0					
	accuracy	bias_score	$success_ratio$	hit_rate	false_alarm_ratio
GGX4_ref	0.85	0.76	0.35	0.26	0.65
$EMEP21_ol_fcst$	0.86	0.62	0.37	0.23	0.63
$EMEP21_ekf_fcst$	0.86	0.62	0.37	0.23	0.63
threshold $= 30.0$					
	accuracy	bias_score	success_ratio	hit_rate	$false_alarm_ratio$
GGX4_ref	0.7	0.59	0.67	0.4	0.33
$EMEP21_ol_fcst$	0.69	0.52	0.69	0.36	0.31
$EMEP21_ekf_fcst$	0.69	0.52	0.69	0.36	0.31

Results in Forecast chain - O₃

- => SEEDS products:
- degrade events detection
- degrade overall quality of the forecast
- degrade bias

threshold $= 240.0$					
	accuracy	bias_score	success_ratio	hit_rate	false_alarm_ratio
GGX4_ref	1	0.33	0.13	0.045	0.87
$EMEP21_ol_fcst$	1	0.3	0.13	0.04	0.87
$EMEP21_ekf_fcst$	1	0.33	0.12	0.04	0.88
threshold = 180.0					
	accuracy	bias_score	$success_ratio$	hit_rate	${\it false_alarm_ratio}$
$GGX4_{-}ref$	0.99	0.76	0.38	0.29	0.62
$EMEP21_ol_fcst$	0.99	0.57	0.39	0.22	0.61
EMEP21_ekf_fcst	0.99	0.61	0.38	0.24	0.62


threshold $= 240.0$		-			
	accuracy	bias_score	success_ratio	hit_rate	false_alarm_ratio
GGX4_ref EMEP21_ol_fcst EMEP21_ekf_fcst	1 1 1	$0.95 \\ 0.63 \\ 0.67$	$0.048 \\ 0.057 \\ 0.054$	$\begin{array}{c} 0.045 \\ 0.036 \\ 0.036 \end{array}$	$0.95 \\ 0.94 \\ 0.95$
threshold = 180.0					
	accuracy	bias_score	success_ratio	hit_rate	${\it false_alarm_ratio}$

Results in Forecast chain

72

84

0.37 0.36 0.35 0.34 0.33 0.32

Ò

12

24

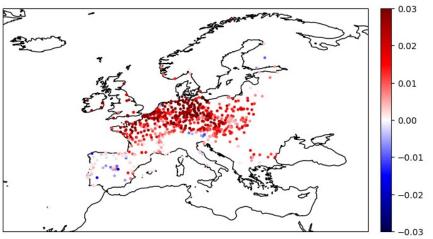
36

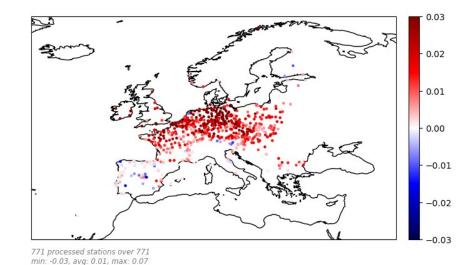
48

nsm

Forecast time (hour)

60


PM10 forecasts !



Results in Forecast chain - PM10

Correlation

771 processed stations over 771 min: -0.03, avg: 0.02, max: 0.08

EMEP-OL - Ref

EMEP-EKF - Ref

=> Strange zonal variation...

Conclusion

Analyses

- No big improvement, but
 - interesting impact on ozone events
 - Reduction of PM10 bias
 - Difficulties to improve result in analyses

General

- Lots of work to analyze in depth all the simulations
- Same behaviour between OL/EKF
- Impact visible on secondary pollutant
- All deposition velocities are changing
 - Not easy to determine the ways of the improvements/degradation
 - Lack of deposition velocities measurements to validate deposition schemes
 - Potential link with CAMS2_40 Task 4041 on deposition
 - Lack of concentration measurements
 - NH3, NMVOC, SIA, etc...
- Are these conclusions the same in other models? Need intercomparison

Forecasts

Degradation of ozone scores :-(

- But variable depending season
- Improvement of PM10 scores :-)

www.seedsproject.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004318