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‘ 1. Perspective for integration of top-down and bottom-up

2. Perspective for using better fire observations



GFAS algorithm overview

satellite FRP gridding, including no-fire observations

continuous FRP
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NO2/CO emission ratio differs systematically.
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MDR:

3.58 £ 1.13 (S. America savanna fires)
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Biomass burning combustion efficiency observed from
space using measurements of CO and NO; by the
TROPOspheric Monitoring Instrument (TROPOMI)

Ivar R. van der Velde!-2, Guido R. van der Werf!, Sander Houweling!?, Henk J. Eskes?, J. Pepijn Veefkind>*,
Tobias Borsdorff2, and Ilse Aben!-




The pyrogenic emission network

fuel pools, moisture, wind, slope, ... NWP,
(flaming vs. smoldering combustion) models
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GFED4

EO fuel pools, moisture, wind, slope, ...
(flaming vs. smoldering combustion)
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FRP conversion factor analysis against GFED3
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FEER / QFED constrained by plume analyses
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Observe FRP and AOD in |nd|V|duaI plumes (FEER)

Atmos. Chem. Phys., 14, 6643-6667,2014
www.atmos-chem-phys.net/14/6643/2014/
doi:10.5194/acp-14-6643-2014

© Author(s) 2014. CC Attribution 3.0 License.

Global top-down smoke-aerosol emissions estimation using satellite
fire radiative power measurements

C.Ichoku! and L. Ellison!?




GHG inversions
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Global 4D-Var CH4 inversion in GCM as “boundary
condition” for other emissions

° 5964 J. McNorton et al.: Quantification of methane emissions from hotspots and during COVID-19
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Figure 1. (a) Schematic of different resolutions used in the inversion shown by pseudo-data for five sectors. The magnitude of prior emissions
at ~ 9km (left panel) and those same emissions used as input to the forward model at ~ 25 km (middle panel). The inversion increment at
~ 80 km, resulting scaling factors are applied to all sectors within the grid cell, the boxes indicate relative contribution per sector (right
panel). (b) Schematic of inversion setup using the 24-h window, correcting for the initial 3D state, emissions, and initial conditions in the
prior of the subsequent window.

Atmos. Chem. Phys., 22, 5961-5981, 2022 https://doi.org/10.5194/acp-22-5961-2022




Probabilistic CO and AOD inversion
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Regional inversion of CO and AOD with CTM

10400 I. B. Konovalov et al.: Constraining CO, emissions from biomass burning
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Figure 7. Time series of (a) daily total CO columns and (b) AOD simulated by CHIMERE with (“Fires_base”) and without (“No_fires”)
fire emissions in comparison to the data from the corresponding IASI and MODIS measurements. The measurements and simulations for the
days shown were withheld from the emission estimation procedure. The simulations are presented after debiasing. Note that the indicated
bias represents the values of A (see Sect. 2.3) taken with the opposite sign. All values are the averages over the Siberian study region.

Atmos. Chem. Phys., 14,10383-10410, 2014 www.atmos-chem-phys.net/14/10383/2014/




Goal: Constrain dynamic model for CC, AFL, EF

| fuel pools, moisture, wind, slope, ... NWP,
‘ (flaming vs. smoldering combustion) models
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Example modelling of CC, AFL, CF & EFyy;

TUD S4F Data-Model Fusion Approach
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Possible starting point

1. invert species with best observational constraint and knowledge on
emission factor (EF) = carbon monoxide
e CO emission flux inversion from S5P-TROPOMI, MetOp-IASI (SEEDS!)
* EF,, dependent on vegetation and fuel/soil moisture, possibly online

2. calculate conversion factor (CF)
» dependent on vegetation and fuel/soil moisture

3. use EF for other species from literature

4. adjust EF well-observed species with dedicated regional inversions

* S5P-TROPOMI: HCHO, NO,, CH, (SEEDS!)
* Metop, MODIS, VIIRS: aerosols
* including dependence on vegetation and fuel/soil moisture




Outline

‘1 1. Perspective for integration of top-down and bottom-up

2. Perspective for using better fire observations



Some sources of error

e Burnt Area: Small fires are often below T
detection threshold. area (% yr ')

* Fire Radiative Power: Sampling of
transient & stochastic phenomenon is
incomplete due to orbits and clouds.

(b) Small fire burned ’;«" ;
area (%yr!)

[van der Werf et al. 2017]

* Emissions: Fuel and fire modelling or /.
empirical parameterisation is required. ——

* But every fire is different, depending of
fuel type, fuel condition, meteorology ~ G
humans response etc.

(c) Fraction of total

* Little ground truth available. s ares rom | 45"

small fires (%)




1-hour merged inverse variance for FRP observations in m*W-2
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[Hiiser et al. CAMS 2018]



FRP observation bias: SEVIRI w.r.t. MODIS

instantaneous fire clusters: monthly 2°x2° grid cells:
4 * 4% underestimation " 57% underestimation
1300 2000 -
] = 0 96x 3
3 :==c:).96,n=164 o & —_ SEVIRI FRP
- 3000] |blas=05MW o 0w = .
g ] ey ” = x S 1500 | asa function y
—_ . O
Z 2500 S & T of MODIS FRP
22 | ~N v
“ I Q > = i
E 5| =3
2 ] Y © -
5] D g = 00 y = 0.43x - 95.55
= 1000 ] 9 ) R?=0.94
] (@)
500_' .Q\:. O | | | |
; North Africa 0 1000 2000 3000 4000
R REaana — Mean daily MODIS FRP
Q 500 1000 1500 2000 2500 3000 3500

Per-fire FRP from MODIS (MW) [MW per grid cell]

[Heil et al. CAMS 2016]



GFAS algorithm overview

satellite FRP gridding, including no-fire observations

continuous FRP

Kalman filter <observation precision : :
bias correction :
fire model




MODIS-Terra
MODIS-Aqua
VIIRS-NPP
SEVIRI

1 Himawari-8

Bias correction factors calculated to
keep the global annual assimilated

4 FRP budgets from different
' instruments un-biased:

m Bias correction factors

Daytime Night-time
1.87 1.20
0.73 1.67
0.79 6.27
1.8 1.8
3.2 3.8
2.7 2.4
3.1 4.1
TBD TBD

Basic bias correction works on continental scale.

Hourly GFAS FRP over SEVIRI disc using
different combinations of bias-corrected
MODIS-, VIIRS- and SEVIRI-FRP:
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[Hiiser et al. CAMS 2018, Zhang et al. CAMS 2021, Kaiser et al. 2023]




SEVIRI w.r.t. MODIS
on finer scale

where SEVIRI saw more fire
(more frequent observations)

FCI aboard MTG combines
high observations frequency with

low detection threshold
-> available in 2024

where MODIS saw more fire
(lower detection threshold)

FRP density 2016 [W m 2] - negative

1073 1072



Summary

1. Fire Radiative Power observations from Meteosat Third Generation
provide a unique opportunity to significantly reduce the major error
sources in fire observations over Europe

2. Bottom-up and top-down emission estimates
* integration paths can be identified

3. key elements of initial improved European service:

* FRP from MTG

 calibrated with atmospheric CO observations -> S5P, S5, S4, Metop
HCHO, CH4, NO2, aerosols, ... optimised individually -> S5P, S5, S4, Metop
track flaming / smoldering
compatibility with CAMS-GFAS and integrated assimilation




Outline, extended

1. Perspective for better fire observation
2. Perspectives for integration of top-down and bottom-up

3. Other aspects
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Bias correction for individual FRP products feasible at

1 deg resolution, using PDF matching.
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higher detection thresholds and negative biases.

[Kaur et al. RSE 2019]

Task: Find map of each PDF onto rightmost part of 6-deg one.

o(p,8) =1+ exp(a— blog p) + exp(c — dlog p).

a=T72.76 — 0.6770 + 0.009636>
b = 26.83 — 0.2480 + 0.003176*
c=—19.43 + 0.546
d=—5.34+0.160



FRP modelling

using NWP input

Machine learning
provides better

forecasting and gap
filling than persistence.

Code for Earth 2023
Fire Forecasting

I\\
[ ) !Hm

Participants: Robert Maiwald, Timo Metz, Eva-Marie Metz,
Christopher Liicken-Winkels
Mentors: Johannes Kaiser, Mark Parrington, Miha Razinger,

Mihai Alexe, Siham El Garroussi

CODE

—OR EARTH

- Collaboratio

& ECMWF
Mean Average Root Mean Squared | Correlation
Error [W/m#2] Error [W/m#2]
Persistence 0.1660 0.2491 0.6374
Linear regr. 0.1939 0.2054 0.7383
Regr. Tree 0.2220 0.2356 0.6274
NN ensemble 0.0991 0.1795 0.8156

Cdg




Collaborate with

* Copernicus Emergency Service
* fire weather

e Copernicus Land Service
» vegetation state, burnt area

* ESA Sense4Fires for variability in emission and conversion factors
e ECMWE for land and fire modelling

* U Wageningen for GFED modelling




Thank you for your attention!




Vegetation fires

* natural part of many ecosystems
* peat, soils and deforestation fires

are net sources of CO,

affect atmosphere & air quality

global trend negative
* savanna -> agriculture

increase in high latitudes

increased intensity and frequency
change land cover

Tg(C) per month/year
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Arctic carbon consumption in open biomass burning
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n Comparison of inventories
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Copernicus atmosphere Monitoring Service (CAMS)

CAMS is one of six : N il
thematic information e | | e (]
o services provided by

§ the Copernicus Earth
Observation Programme
\ of the European Union.

User driven with free and e LAND MONITORING :
unrestricted access. ' | '

‘ " SECURITY

. . EMERGENCY MANAGEMENT




o o o o

CAMS main operational data
assimilation and modelling systems
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CAMS Global Fire Assimilation System v1.4 (GFAS1.4)

GFAS Total Fire Radiative Power - October 2023

AAAAAAAAAAAAAA P

[ [ (opemics Z3ECMWF &

Main uses:

Input for CAMS global and regional operational systems
Applied to many other models across the atmospheric
chemistry modelling community

Communication activities (e.g., CAMS communication &
press; BAMS & C3S state of the climate reports;
presented at workshops for various wildfire-related
activities)

Global Fire Assimilation System (GFAS); see
https://ads.atmosphere.copernicus.eu/cdsapp#!/data
set/cams-global-fire-emissions-gfas?tab=overview

Uses satellite observations of Fire Radiative Power
(FRP)

Currently Aqua and Terra MODIS FRP
observations

Global Coverage at ~10km Resolution

Hourly Output (+24-h means): 7-hours behind
NRT

Emissions of aerosols and gases are estimated
using factors dependent on vegetation type.

Injection heights calculated with Plume Rise Model
and IS4FIRES



GFAS observation gap filling

o~ o
@ ’ PLOS | ONE Characterization of Peat Fires in Indonesia over the 2015 Fire Season Using a New FireBird Satellite

e Kalman filter with
persistence model e T _
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data. (d) The MODIS image overlaid with TET-1 imagery, which shows MODIS hotspot active fire detection being inhibited by thick smoke
and haze.

doi:10.1371/journal.pone.0159410.g003



Challenges 1/3: Some major scientific interests

* increase in intensity of wildfires
* increase in wildfire activity in boreal and arctic regions

e 2-way interaction with land cover change
e associated net release of CO2 into atmosphere

* impact on air quality & atmospheric composition




Challenges 2/3: satellite-based Earth observation

* Fill FRP observation gaps by merging all available FRP observations
& fire modelling with ML!

e distinguish flaming vs. smoldering and above- vs. below-ground fires
» use diurnal cycle and peak FRP from EO

 calibrate empirical conversion of FRP to burnt biomass and emissions

» use top-down constraints from plume EO
» dependence on meteorology & vegetation -> "Fire4Sense” by Jos de Laat

* combined analysis of FRP and burnt area observations



Challenges 3/3: CAMS-GFAS

e continuity beyond MODIS era
e assimilate FRP from VIIRS and
* basic bias correction and , to be improved

* also assimilate geostationary observations of FRP
* SEVIR], , MTG-FCI

e operationalisation of new developments
 bias correction and FRP modelling

* re-calibrate empirical parameters: FRP -> burnt biomass -> species
* against upcoming GFEDS5 or
* inversion of CO & AOD plume observations (and others)
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