## Evaluation of SEED agricultural NH<sub>3</sub> emissions in Denmark

Camilla Geels, Lise M. Frohn, Jesper H. Christensen, Carsten A. Skjøth, Thomas Ellermann, Anne Sofie Lansø, Steen Gyldenkærne and Jieying Ding, Ronald van der A, Henk Eskes









#### Danish context:

- ➤ Large a gricultural sector (e.g. >10 mio. pigs).
- >>60% of the Danish land are a.
- Active national environmental policy to reduce the loss of nitrogen to the aquatic environment.







# Danish methodology —spatial distribution: (emission and modeling group)

- ➤ Bottom-up emission inventory—standard reporting.
- The SPREAD mode [1]: Spatial mapping based on high resolution spatial distribution keys (regulation-> detailed data).



Examples:

Chicken farms (point sources).

Application of fertilizers (a field scale – 100 m x 100 m).



<sup>[1]</sup>Plejdrup et al., 2018. Spatial high-resolution distribution of emissions to air – SPREAD 2.0. Aarhus University, Technical Report from DCE No. 131 http://dce2.au.dk/pub/TR131.pdf



## Danish methodology -temporal distribution:

- A dynamic NH<sub>3</sub> emission model developed for Denmark<sup>[1,2]</sup> and Northern Europe<sup>[3]</sup>.
- ➤ 16 different functions describing the temporal variation in NH<sub>3</sub> emissions from various activities.
- Driven by e.g. Tand crop growth/application of manure described by Gauss functions<sup>[2]</sup>.

| Function | Description                                                      |
|----------|------------------------------------------------------------------|
| Fkt 1    | Animal houses with forced ventilation                            |
| Fkt 2    | Open animal houses (non-forced ventilation)                      |
| Fkt 3    | Manure storages                                                  |
| Fkt 4    | Winter crops (no emission simulated in this study)               |
| Fkt 5    | Spring crops (no emission simulated in this study)               |
| Fkt 6    | Late spring crops (no emission simulated in this study)          |
| Fkt 7    | Grass                                                            |
| Fkt 8    | Spring application of manure on bare soil                        |
| Fkt 9    | Application of manure on crops                                   |
| Fkt 10   | Summer application of manure                                     |
| Fkt 11   | Autumn application of manure                                     |
| Fkt 12   | Spring application of fertilizer (90% of all fertilizer)         |
| Fkt 13   | Summer application of fertilizer (10% of all fertilizer)         |
| Fkt 14   | Emission related to grassing cattle                              |
| Fkt 15   | Emissions related to ammonia treated straw                       |
| Fkt 16   | Emissions related to personal vehicles with catalytic converters |

<sup>[1]</sup> Skjøth et al,(2004) Implementing a dynamical ammonia emission parameterization in the large-scale air pollution model ACDEP109, D06306, doi:10.1029/2003JD003895.

<sup>[2]</sup> Gyldenkærne et al (2005) A dynamical ammonia emission parameterization for use in air pollution models, JGR, 110, D07108, doi:10.1029/2004JD005459.

<sup>[3]</sup> Skjøth et al (2011). Spatial and temporal variations in ammonia emissions - a freely accessible model code for Europe: Atmos. Chem. Phys., 11, 5221-5236.



## Danish methodology –N deposition:

- Regional to local scale modeling<sup>[1]</sup> for Denmark –
  DEHM/ OML-dep.
- Annual reporting to the Danish EPA<sup>[2]</sup>.





[1] Geels, C., Andersen, H. V., Skjoth, C. A., Christensen, J. H., Ellermann, T., Lofstrom, P., Gyldenkaerne, S., Brandt, J., Hansen, K. M., Frohn, L. M., and Hertel, O.: Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS, Biogeosciences, 9, 2625-2647, 10.5194/bg-9-2625-2012, 2012.
[2] Ellermann, T., Bossi, R., Sørensen, M.O.B., Christensen, J., Løfstrøm, P., Lansø, A. S., Monies, C., Geels, C., & Poulsen, M. B., 202x: Atmosfærisk deposition 2020. NOVANA. Aarhus Universitet, DCE nr. 471. http://dce2.au.dk/pub/SR471.pdf



Focus on 2020 NH<sub>3</sub> emissions: Spatial distribution





## Focus on 2020 NH<sub>3</sub> emissions: Seasonal variation – the functions from the dynamic model





#### 'Standard way' to evaluate

-comparing the modelled NH <sub>3</sub> concentration to observations.

The DEHM model captures the temporal variability, but overestimates the spring peak.





Top in April, June and August.



#### Additional ways to evaluate

-comparing the Danish NH<sub>3</sub> emissions to other emissions estimates.

SEEDS
Sentinel EO-based Emission and Deposition Service

Total NH<sub>3</sub> emissions in 2020.





Plots provided by Jieying Ding.



#### **Evaluating the temporal variation**

-comparing the Danish NH<sub>3</sub> emissions to other emissions estimates.

According to Danish

NH<sub>3</sub> observations: top

in April, June and

August.

The top in April only slightly larger...

The top-down DECSO estimate is not capturing this...



Plots provided by Jieying Ding.



## Perspectives:

- Independent evaluation of our national emissions are highly relevant.
- Standard bottom -up estimates are e.g. not accounting for higher emissions in warm years.
- ➤ A more detailed comparison covering several years is needed to give a better view on the pros and cons related to top-down and bottom -up estimates for Denmark.
- Thanks for this opportunity!

