

Dry deposition perspectives in EMEP & CAMS

David Simpson & Hilde Fagerli

EMEP MSC-W, Norwegian Meteorological Institute, Oslo

Overview

- 1. CAMS2_40: Task 4041: Evaluation of deposition modelled by regional and CAMS-global (3 versions).
- 2. Dry deposition experiences and lessons from EMEP modelling
- 3. Links to satellites and SEEDS

- <u>Timeline</u>: 01.05.2022 --> 31.10.2023 (18 months)
- Dedicated study to **evaluate the deposition fluxes** for key pollutants from the Regional Systems, (as well as from the global CAMS data assimilation and forecasting system).
- 1-year model run for a historical year where most observations are available. 2018 chosen due to ICP Forest data
- Compare to observational data on **wet deposition** of **sulphur, oxidized nitrogen, reduced nitrogen and sea salt** from different networks: EMEP, OSPAR, HELCOM, national data (when available), ICP Forest
- Comparison to surface observation included for explanatory reasons (EMEP, OSPAR, HELCOM observations)
- Inter compare dry deposition fluxes
- Participating models: EMEP, CHIMERE, DEHM, LOTOS-EUROS, MOCAGE, MONARCH, SILAM + CAMS48, CAMS49 and CAMSRA

📕 ddep oxn 📃 wdep oxn

Wet vs dry deposition of OXN

Large spread in wdep

0.8 Observation (monthly) Observation (daily) DEHM - All Models (monthly) proxyDryOXN (mg N m-2 d-1) 0.6 All Models (daily) CAMSRA CHIMERE SILAM 0.4 EMEP CAMS48 0.2 0 Jan '18 May '18 Jul '18 Sep '18 Mar '18 Nov '18

Time

Wet deposition of oxidized nitrogen.

- All models are lower compared to ICP Forest than EMEP observations, as expected
- MONARCH underestimate WetOXN substantially
- SILAM, LE, DEHM, CAMSRA underestimate WetOXS somewhat (~20-30%)
- CHIMERE and EMEP (CAMS48, CAMS49) around zero bias
- MOCAGE results not available

Wet deposition of RDN

- Similar total wet dep (except SILAM) but very different seasonal variation
- MOCAGE, CHIMERE, LE, (SILAM) had large March peak,

Wet deposition of reduced nitrogen

- SILAM and CAMSRA substantially underestimate wdep RDN (~50%)
- EMEP, CHIMERE, LE and DEHM around 0 bias
- MOCAGE overestimate somewhat
- Higher spatial correlation than for OXS

CAMS2_40: some conclusions (very brief!)

- Total dep (dry + wet) are relatively similar across regional models for RDN and OXS but not for OXN. Global CAMS has higher total dep for all the species. (As CAMS uses MACCity emissions?)
- The importance of dry vs wet deposition varies across models, and by species
- Some issues found in some models (e.g. older time profile for NH3 emissions).
- There are substantial differences in aerosol deposition (factor 10)
- Report completed and sent to ECMWF. (ie not yet available.)

EMEP – Biosphere-atmosphere exchange

- BVOC emissions
 - **–** O3
 - SOA
- NOx/NHy emissions from vegetation and soils
- NOy/NHy/PM deposition
- O3 fluxes to ecosystems

O3 fluxes, Klingberg et al., Env.Poll. 2008

Norwegian Meteorological

EMEP dry N_r deposition by compound – around the globe

NAM = North America; SEA = South & East Asia; EUR = Europe

Schwede, DB, Simpson, D, et al., Modelling nitrogen deposition in global forests, https://doi.org/https://doi.org/10.1016/C2021-0-00011-0, 2023.

models

Deposition - general problems

Dry deposition fluxes depend on:

1.Emissions & concentrations of NO₂, NH₃, 2.LAI (leaf area) 3.Phenology 4.Canopy density **5.Humidity 6.Soil** moisture 7.Non-stomatal uptake 8.Temperature

Problem: we have poor data on (1), (2), (3), (4), (6) and (7)! SEEDS can hopefully help with (1), (2), (3), (6)

An unresolved problem... 4000 kg NH₂-N y⁻¹ Distance Deposition kg ha⁻¹ Concentration NH₃ µgm⁻³ Sum of deposition within 270m of farm woodland is: 155 kg N y⁻¹ (4% of emissions)

Fowler et al., 1998

- Problem: within-grid variation > grid-to-grid!
- CTMs cannot today resolve local features.
- Need to develop methods to deal with sub-grid. Statistical? Semi-explicit?

Norwegian Meteorological Institute

Satellite- uses for deposition?

• Pros:

- Global coverage
- Spatial location of sources
- Temporal patterns
- Quantification of emissions
- Quantification of concentrations NO₂, ...
- Vegetation/landcover e.g. LAI, phenology

• Cons:

- Lacks data on key deposition components e.g. HNO₃, pNO₃
- Uncertainties in concentration/emission/LAI and other estimates
- Summary satellite data and inversions cannot give independent estimate of deposition, but are good complement to surface stations and models

Acknowledgements

 ICP-Forests and EMEP CCC (incl. data from OSPAR, HELCOM) for data used in CAMS comparisons

• Colleagues from CAMS and EMEP networks