

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004318

SEEDS NOx emissions from industrial plants

Ronald van der A, Jieying Ding, Henk Eskes

KNMI

Contents

- Method: NOx emissions using DECSO applied to TROPOMI observations
- Comparison with power plants
- Examples of results for 2019-2022

DECSO Daily Estimates Constrained by Satellite Observations

- State vector forecast $\mathbf{x}^{f}(t_{i+1}) = M_{i} [\mathbf{x}^{a}(t_{i})]$ Error covariance forecast $\mathbf{P}^{f}(t_{i+1}) = \mathbf{M}_{i}\mathbf{P}^{a}(t_{i})\mathbf{M}_{i}^{T} + \mathbf{Q}(t_{i})$ Kalman gain matrix $\mathbf{K}_{i} = \mathbf{P}^{f}(t_{i})\mathbf{H}_{i}^{T}[\mathbf{H}_{i}\mathbf{P}^{f}(t_{i})\mathbf{H}_{i}^{T} + \mathbf{R}_{i}]^{-1}$ State vector analysis $\mathbf{x}^{a}(t_{i}) = \mathbf{x}^{f}(t_{i}) + \mathbf{K}_{i}(\mathbf{y}_{i}^{o} H_{i} [\mathbf{x}^{f}(t_{i})])$ Error covariance analysis $\mathbf{P}^{a}(t_{i}) = (\mathbf{I} \mathbf{K}_{i}\mathbf{H}_{i}) \mathbf{P}^{f}(t_{i})$
- It is fast: one model run per assimilation step of 1 day
- No *a priori* information: unknown sources become visible.
- Model: CHIMERE v2020r3
- Observations: TROPOMI NO2 v2.4
- Includes error estimate
- Used for <u>daily</u> NO_x and NH_3 emissions

Regions at various resolutions

(0.2°x0.2°)

Comparison to CAMS emissions

Country totals of NOx

Anthropogenic NOx emissions of point sources

Comparing of isolated point sources

Trajectory along wind field

Multiple trajectories from one observation to grid cell

Many trajectories along the plume, many orbits leads to smoothing:

+ Point source

Because of the resolution of both observations and grid cells, the resulting emissions are spread to neighbouring grid cells.

Solution:

We compare 3x3 grid cells, and making sure that no other big emitters are nearby.

Anthropogenic NOx emissions of point sources

Maritsa-Iztok power plants, Bulgaria

- Good agreement
- Lower emissions in Covid period

Belchatow lignite power plant, Poland

- Biggest emitter in Europe
- No E-PRTR in 2020
- DECSO at high latitudes in winter have less accuracy
- E-PRTR higher than CAMS and DECSO

Sostanj power plant, Slovenia

- Despite the location of small cities in the neighbourhood, E-PRTR is much lower than CAMS/DECSO
- Good agreement DECSO and CAMS, but more variability in DECSO

Group of power plants in North of Greece

- Summer dip: energy from lignite is more expensive than renewables
- Trend is similar, but trend in E-PRTR seems stronger than DECSO

Biggest industrial emitters in Serbia

Conclusions NOx emissions of industrial facilities

- Independent check of emissions of industrial facilities using DECSO applied to TROPOMI observations
- Annual emissions of CAMS and DECSO often agree, but E-PRTR can deviate significantly (too high or too low)
- Temporal evaluations of a power plant or industrial facility are feasible.

Challenges:

- 1. The current TROPOMI/DECSO combination spreads a point source over 10 km distance.
- 2. TROPOMI sees only NO_2 that is emitted in the hours before 13:30 (overpass time of TROPOMI).

Future improvements:

- 1. Derive emissions on 10x10 km over Europe to lessen spatial smoothing.
- 2. DECSO has already been developed and tested for observations of geostationary satellites! (part of SEEDS tasks)