

Sentinel EO-based Emission and Deposition Service

Alternative approaches to derive emissions from satellite data

Henk Eskes (KNMI)

Koninklijk Nederlands nisterie van Infrastructuur en Water

TROPOMI NO2 over Europe

From TROPOMI NO2 maps we can derive emission estimates for:

- cities
- highways
- ships (routes + individual cargo ships)
- airports
- various types of industries:
 power plants, vertiliser,
 (petro)chemical, cement ...

Why use satellite data for knowledge on emissions?

Strong points:

- Daily measurements (for NO2 about 1 per 2 days due to clouds): detect sudden changes in emissions within a few days (e.g. COVID-19 lockdown related) Real-time emission estimates.
- * **Full coverage**, not limited to station locations only: total emission budgets.
- * Gradients in **total column** are a direct measure of **emissions** Daily pollution **plumes** can be analysed to provide emission estimates.
- Very little noise in NO2, TROPOMI: we can analyse daily data. (For HCHO / NH3 noise is larger - averaging in space / time)

Limitations:

- * Only **one overpass** per day, close to noon time, **cloud-free**, resolution of about 5 km. TROPOMI observations need to be complemented with diurnal profiles.
- * No direct emission **sector information**, but can be derived indirectly from spatial distribution

Future: Geostationary satellite observations over Europe with **Sentinel-4** (launce 2024)

SEEDS has performed a case study for Sentinel-4 potential using TROPOMI data at high latitudes

Emission estimates from satellites: different approaches

Three groups of approaches:

- > Plume analysis methods
- > Flux divergence approach
- > Inverse modelling approaches

Emission estimates #1: plume analysis

Plume fit depending on

- emission strength,
- plume width,
- NO2 lifetime

Emission distribution within megacity

Estimating NOx emissions of Paris Lorente et al., Nature Sci. Rep. 2019

Emission estimates #1: plume analysis

Montreal, Canada

Fitting TROPOMI NO2 data with a statistical model with empirical plume dispersion functions driven by a meteorological reanalysis.

- multiple point sources
- area sources

Make use of:

- point source locations
- population density
- elevation

Fioletov et al.,

https://doi.org/10.5194/acp-22-4201-2022

Can be used to create point source emission catalogue

Emission estimates #2: flux divergence approach

One overpass over Riyadh

Yearly mean concentration

Yearly mean emission

Flux divergence method, Beirle et al., Science Adv. 2019

Emission estimates #2: flux divergence approach

Method improvements

- Profile shape (plume height)
- Lifetime
- NO2/NOx ratio

Figure 8. Location of point sources listed in v2 of the catalog. Matches in GPPD and/or WCD are indicated by colors as in Fig. 7. The background map highlights regions with high LER, where a detection limit of 0.03 kg s^{-1} is assumed.

Improved catalogue of NO2 point source emissions Beirle et al., ESSD, 2023 Global point source catalogue identifying power plants, cities and other sources

Emission estimate #3: Inverse modelling and data assimilation

Match of **satellite observations** and **chemical-transport model** simulations via **data assimilation**:

- Kalman Filter (DECSO algorithm of KNMI) SEEDS
 - Based on French CHIMERE model
 - Fast, only one model run needed
 - No a-priori needed, unknown sources
 - Error estimates
- *4D-Var or Ensemble Kalman Filter approaches* More computer-intense to run. Development of 4D-Var adjoint.
 - Ex: EnKF global tropospheric multi-species reanalyses Optimising concentrations + emissions; TCR-2, Miyazaki et al., ESSD, 2020.
 - Ex: Magritte inversion of HCHO for Isoprene emissions SEEDS
 - Ex: Development of the 4DEnVar system, Emanuele Emili SEEDS
 - CAMS is now developing emission inversion capabilities in IFS-COMPO.
 Building on SEEDS products and developments.

Three approaches for emission estimates: Pros and Cons

Plume analysis:

- > Pro: Analyse individual plumes on daily basis
- > Pro: Derive lifetime from plume shape
- > Con: Overlapping plumes more messy.
- Con: Atmospheric transport does not always lead to well-defined single plumes: turbulence, wind sheer, orography
- > Con: Emissions are retrieval a-priori dependent

Emission estimates: Pros and Cons

Flux divergence method:

- > Pro: Easy to implement, fast to run
- > Pro: No identification of plumes needed
- > Pro: High spatial resolution, good for creating point-source catalogues
- Cons:
 - * Emissions depend on the retrieval a-priori, typically (low) biased in simplest approach Good quantitative results requires additional complexity and corrections.
 - Lifetime most difficult part: Use of OH from model often very uncertain / model dependent Spurious background emissions
 - Noisy: can not be used for individual days.
 Typically results averaged, producing monthly-to-yearly emission maps

Emission estimates: Pros and Cons

Inverse modelling methods:

- Pro: Using state-of-the-art chemistry modelling to relate concentrations to emissions, based on NWP weather analyses.
- > Pro: Full 3D approach, modelling of vertical mixing and 3D transport of profiles
- Pro: Averaging kernels can be used, making emission estimates independent of the retrieval a-priori
- Con: Model uncertainties and error covariances, and final emission uncertainty in practice difficult to quantify
- Con: Often inversion systems dependent on a-priori emissions (by design) (optimise scaling factors of existing bottom-up emission inventory)
 -> DECSO approach is exception.
- > Con: Large-scale computing, big codes, more specialised

Verification of NOx emissions: DECSO versus Flux-divergence

Flux-divergence

Sentinel-5P, JJA-2019, NOx emissions derived from NO₂ flux divergence, tau=4h

NOx emissions derived from flux divergence (nmol/m²/s) -30 -20 -10 0 10 20 30

DECSO

DECSO NOx emissions dervied from TROPOMI, July 2019

Using satellites to derive emissions

Three groups of approaches:

- **O** Plume fitting methods
- O Flux divergence approach
- O Inverse modelling approaches

There are strengths and weaknesses in each of these approaches.

They are based on very different inputs, tools and assumptions, highly complementary.

Conclusion:

We can learn about the top-down emission uncertainties by comparing the results of different emission estimation approaches

