Fire emissions in SEEDS

Jenny Stavrakou Glenn-Michael Oomen Jean-François Müller

tropo_aeronomie_be

Uncertainties in fire inventories

 O Uncertainties due to detection of burnt area, FRP, emission factors, biome types, fuel consumption + difficulty to account for understory fires, peatland fires → hampers our understanding of fire impacts

BB datasets	Relies on
GFED4s	MODIS burnt area + active fires
FINN	MODIS active fire counts + active fires
GFAS	Assimilated MODIS FRP
FEER	As in GFAS, constrained by MODIS AOD
QFED	MODIS FRP + AOD
SEEDS	Top-down, based on HCHO chemical data

- Factor of ~4 between the global estimates, larger differences at regional scale
- Inventories perform differently depending on species, season, location

Satellite HCHO data offer an alternative way to constrain biomass burning emissions

Formaldehyde observations from Sentinel-5p

- $\circ~$ HCHO is a weak absorber
- With past sounders, there was a need to average
 HCHO columns over a month ro reduce data noise
- TROPOMI high S/N and more data allow to increase temporal resolution, e.g. weekly. Daily observations over Europe are too noisy.

○ Daily global coverage
 ○ $3.5 \times 5.5 \text{ km}^2$ resolution

From bottom-up to top-down emissions through MAGRITTE

anthropogenic emissions

Illustration of TROPOMI HCHO columns during fires

✓ 2023 heatwave was the longest in history (16–17d), largest recorded fire in the EU
 ✓ High HCHO columns recorded due to massive emission of pyrogenic VOCs

Emission enhancements : average May-September

Danube fires in 2019: bottom-up vs top-down

Day of month

An example of extreme weather caused by climate change

- Top-down emissions are lower than all inventories
- The peak on 6 Aug is well captured in all datasets, except for GFED
- The SEEDS peak is x2-3 lower than QFED/GFAS, could be due to the export of pollution due to strong winds

Underestimated cropland burning in Ukraine/Russia

May 2018

- ~Half of Ukraine is cultivated area, 70% of land area is dedicated to agricultural use
- Due to the small size of cropland fires, satellite burnt area is often underestimated
 - SEEDS estimates are factor of 1.5-2 higher on average than QFED, GFAS estimates are the lowest

Share of cropland burning in Ukraine

The share of top-down crop residue burning in Ukraine accounts for half of the total flux estimate in the European domain, increased wrt to the a priori

^{1.2} Yearly Crop burning flux (Tg VOC) in Ukraine/Russia

 ✓ Small fires are underrepresented in inventories, due to difficulties to map burnt area from satellites
 ✓ The SEEDS

 The SEEDS products offer an alternative approach, independent of fire proxies

Conclusions and perspectives

- The inversion is able to infer changes in emission strengths and spatial distribution, but not in localization of fires (which relies on a priori biomass burning dataset)
- O Uncertainties in the chemical degradation of BB VOCs in the model → need to update representation of pyrogenic VOCs in the model
- Inherent difficulty: Co-occurrence of sources (fires and enhanced vegetation emissions) during summertime makes it difficult to separate the sources
- TROPOMI HCHO suggest increased fire fluxes from crop residue burning and decreased emissions over forested areas wrt bottom-up inventories → geostationary observations offer promise
- SEEDS top-down emissions publicly available at 0.1°x0.1° for 2018-2022

Funded by the European Union

