

Earth Observation Emissions of NOx, NH₃ and BVOC from SEEDS available for benchmarking

<u>Leonor Tarrasón (NILU)</u>, Jieying Ding, Ronald van der A and Henk Eskes (KNMI), Jenny Stavrakou, Jean-François Müller and Glenn-Michael Oomen (BIRA-IASB), Marc Guevara (BSC) and Paul Hamer (NILU)

Monitoring Emissions from Space – SEEDS webinar – 28th November 2023

SEEDS – H2020 project Sentinel EO-based Emission and Deposition Service

Sentinel 5P & Preparation for Sentinel 4

- > The SEEDS project goal is to develop several topdown (satellite) inversion techniques to estimate European emissions of NOx, NH3, VOC, improve deposition flux modelling and develop advanced data assimilation techniques.
- > The project is developing techniques that may eventually become part of the Copernicus Atmosphere Service (CAMS).
- > SEEDS is now on its third and final year and we have compiled a significant number of datasets in our portal for further evaluation.

SEEDS – New Products

https://www.seedsproject.eu/data

SEEDS uses inverse modelling to produce up-to-date high-resolution estimates of NOx, NH₃ and biomass burning emissions.

- NOx 2019,2020 -2022 Monthly anthropogenic NOx emissions at up to 5 km resolution
- NH₃ 2019, 2020 -2022 Monthly NH₃ emissions with 20 km resolution
- Fires 2018-2020 -2022 Daily top-down biomass burning emissions at 10 km resolution
- Soil NOx 2019, 2020 -2022 Agricultural soil NOx emissions at up to 5 km resolution
- **Biogenic** Organic Compounds with 10 km resolution
- LAI 2018-2020 2022 Leaf area index data sets at 10 km spatial resolution
- Soil Moisture 2018- 2020 -2022 Soil moisture datasets at 10 km spatial resolution
- Deposition 2018-2020, -2022 Deposition fluxes and diagnostics (e.g., stomatal resistance) for ozone and nitrogen at 10 km spatial resolution

SEEDS is part of CAMS evolution under the H2020 space program

https://atmosphere.copernicus.eu Global Daily AQ forecasts

The Copernicus Atmosphere Monitoring Service: CAMS

Improved forecasts of natural dust and forest fires with the use of satellite data

Longer fire seasons, expansion of fire-prone areas

- Heatwaves and droughts drive massive wildfires
- Important concern for air quality

Large differences between inventories

1	nventories
	GFEDv4s
	FINNv1.5
	GFASv1.2
	QFEDv2.5r1
Т	FEERv1.0-G1.2

BB datasets	Relies on	
GFED4s	MODIS burnt area + MODIS active fires (for small fires)	
FINN	MODIS active fire counts + MODIS active fires	
GFAS	Assimilated MODIS FRP	
FEER	As in GFAS, constrained by MODIS AOD	
QFED	FRP fire products, constrained by MODIS AOD	
SEEDS	Top-down, uses chemical observations of HCHO	

- Uncertainties due to detection of area burnt, FRP, emission factors, biome types, fuel consumption, difficult to account for understory fires
- Factor of ~4 between the global emission estimates
- o QFED and FEER much higher than other datasets

→ Satellite formaldehyde offers an alternative way to constrain fire emissions

SEEDS – H2020 project Sentinel EO-based Emission and Deposition Service

Development of supplementary products: SIF, AOD, CHOCHO, HONO, ALH

со

CH₄

so,

NOX and ammonia emissions in SEEDS

Emission estimation method:

Inversion technique using satellite observations and a chemical transport model:

DECSO (developed by KNMI)

NO2 From TROPOMI NH3 emissions from CRIS

DECSO (Daily Emission estimates Constrained by Satellite Observation)

SEEDS inversion of satellite observations for NOX and NH3 based on DECSO (KMNI)

(FA)

Timeseries checks with use of satellite data

Sentinel-5P NO₂ tropospheric column, 2019 yearly mean

Going to a higher grid resolution: 3x5 km in the Netherlands

Powerplant "Hemweg centrale" decommissioned end of 2019

HERMESv3 versus DECSO

HERMES v3.2 (ton NO2/year)

Supercon

Centro Nacio

HERMES v3.2 (ton NO2/year)

Center

Soil NOx emissions

ton

Courtesy: Marc Guevara, BSC

Comparisons for NOx emissions in Barcelona area

ntro Nacional de Supercomputación

- 27.3 kton NO₂/year according to HERMES, which is about 34% of the total emissions found in Catalunya.
- DECSO estimates slightly less NOx emissions for this area: 26.1 kton NO₂/year.
- Although differently distributed over the grid cells, the aggregated emissions are well in line.
- No strong seasonalities identified neither in HERMES nor DECSO

Comparison for NOx emissions in Girona area

- Important differences in the seasonal cycle: DECSO shows a continuous decrease during OND, while HERMES mantains almost constant emissions
- Influence of emissions from agricultural machinery and associated crop calendar re-considered in HERMES

Crop type	Soil cultivation		
	Start_date	End_date	
Wheat	1 st November	31 st December	
Rye	1 st September	31 st October	
Barley	1 st November	31 st December	
Oat	1 st October	31 st November	

Industrial hotspot in Alcanar, Spain

- A strong registered point source in HERMES

 (1.33 kton NO₂/year) → emissions derived from
 the Large Point Source Database provided by the
 Spanish Ministry of Environment
- The DECSO estimation, however, is 74% lower:
 0.35 kton NO₂/year
- Results from the Continuos Emission Monitoring System provided by the Government of Catalonia indicate emissions of 1.1kton NO₂/year
- The large disagreement is not well understood, and subject of further investigation (factory hotspot hardly visible in the level-2 TROPOMI satellite product, errors in the assumed surface albedo?)

Benchmarking ammonia emissions from satellites

HTAP 2018

DECSO 2020

NH3: Spatial distribution of ammonia emissions

Ammonia Comparison of country totals top-down vs bottom-up emission estimate

Monthly variations – Benchmarking in Catalonia

Summer months

NH3 Benchmarking in the Netherlands

Key messages

- Satellite AQ information through inverse modelling can be used to support the review and verification of emission data
 - Location/Resolution
 - Nox soil emission in summer identify from satellite
 - Spatial resolution of EO-based emissions still a challenge
 - Locating sites of very limited value in most European countries Possibly applications in other parts of the world
 - Timeseries checks
 - Verifying year to year variations -
 - Checking emissions from sources that drop below thresholds... and gap filling datasets
 - Estimating monthly/weekly emissions.
 - Emission outlier checks
 - Reported vs EO-based emissions even if EO-based data is not specific to a point source, is still of value in identifying issues.
 - Possible additional analysis with pollutant ratio checks for instance with CO can be informative for QA/QC purposes