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Abstract 

Task 5.3 of the Copernicus project aims at providing a state-of-the-art literature overview on 

the use of artificial intelligence and machine learning in processing EO data. It provides 

information on the ways Artificial Intelligence (AI) can support end user needs and 

recommendations on the use of AI to optimize the exploitation of satellite EO and modelling 

data in general are given. The number of projects and initiatives focusing on the need of the 

integration of EO data processing, -assimilation and application building and artificial 

intelligence techniques is significant and rising. Important bottlenecks limiting the use of AI 

for optimal exploitation of EO data are the lack of labeled datasets, the volume of data and 

the explainability/causality of events. Among others, streamlined platforms and initiatives 

and a focus on a holistic approach for the implementation of AI for EO are recommendations 

for guiding different stakeholders to the for them relevant information. 
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1 Introduction 

1.1 Water-ForCE 

The Horizon2020 project Water-ForCE (Water scenarios For Copernicus Exploitation) will 

develop a Roadmap for Copernicus Inland Water Services, aiming to better integrate the 

entire inland water cycle within the Copernicus Services. It will address current 

disconnects between remote sensing / in-situ observation and the user community. Clarity 

in terms of the needs and expectations of both public and private sectors, as well as the 

wider research and business innovation opportunities will be delivered. The Roadmap will 

advise on a strategy to ensure effective uptake of water-related services by end users and 

further support the implementation of relevant directives and policies. 

The Water-ForCE consortium is led by the University of Tartu (Estonia) and consists of 20 

organisations from all over Europe. It connects experts in water quality and quantity, in 

policy, research, engineering and service sectors. Through close collaborations with these 

communities, Water-ForCE will: 

 

• Analyse EU policies to identify where the Copernicus Services can improve 

monitoring programs and how the Copernicus data can be more effectively used in 

developing and delivering the next versions of the directives. 

 

• Specify the requirements for future Copernicus missions (e.g. optical configuration 

of Sentinel-2E and onward, hyperspectral sensors). 

 

• Optimize future exploitation for inland water monitoring & research and, 

consequently, (a) enlarge the service portfolio and (b) improve the performance of 

current Services. 

The project is divided in eight work packages (WP), each of them focusing on a specific 

problem and/or target of the Copernicus Service (Figure 1). The following report is part of 

WP5 which focusses on Modelling and Data assimilation. 

https://waterforce.eu/
https://www.copernicus.eu/en/copernicus-services


 

8 

 

1.2 Context WP5 

WP5 aims to augment the knowledge acquired in WP1-WP4 by identifying the potential for 

future use of different satellite EO techniques in modelling of water resources for support 

of decision makers towards adaptive management of water resources and policy 

implementation.  

Current issues in Copernicus hindcast/forecast capabilities will be assessed and 

recommendations for future services will be provided. Furthermore, the value of satellite EO 

data to modelling will be examined and the use of Artificial Intelligence (AI) to optimize the 

exploitation of satellite EO and modelling data considered. Finally, WP5 will provide insights 

on how the integration of satellite EO and coinciding modelling aspects can lead to 

beneficial policy support and decision making. 

Detailed work package tasks/milestones include: 

• Report on needs assessment for Copernicus EO needs for modelers and decision 

makers, including an overview of the main stakeholders identifying these needs. 

• Technical recommendations report on Copernicus services and the related data in 

order to improve the monitoring and modelling of water bodies. 

• State of the art and recommendations on the use of Artificial Intelligence (AI) to 

optimize the exploitation of satellite EO and modelling data. 

• Report on integration of satellite EO and modelling aspects for providing better 

decision support and operational management, including recommendations. 
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Figure 1: Schematic overview on the different work packages in the Water-ForCE project, concluding in a 

Roadmap for Copernicus Inland Water Services. 

1.3 Objectives & approach T5.3 

Task 5.3 of the Copernicus project aims at providing a state-of-the-art literature overview on 

the use of artificial intelligence and machine learning in satellite EO data assimilation and -

modelling. Information on the ways of how AI can support end user needs will be provided. 

However, the implementation of AI for EO practices is on the rise, generating numerous 

amounts of papers and review articles. Tackling all user needs (identified during previous 

Water-ForCE deliverables) or opportunities in which AI can play a role and discussing which 

AI algorithms should be used would therefore be impractical and out of scope. Good and 

detailed review papers already exist on how AI can be applied for the majority of these 

topics.  

Therefore, this deliverable will handle the topic of AI for EO in general and a more 

conceptual framework, focusing on providing an overview on the current status of the use 

of AI by the EO community (their attitude towards implementing AI) and ideas/visions on 

how AI can be of further support to the needs of the end user. The latter indicating 

bottlenecks for the end user, limiting the implementation of AI for EO purposes and 

therefore limiting the optimal exploitation of EO data. Specific questions coming to mind 

are: 
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- What is the state of the art on applying AI in EO domains? In which EO domains is 

AI used? 

- How can AI support in solving specific end user needs such as accurately correcting 

systematic forecast errors and predict the time evolution of geophysical parameters 

from satellite and other geophysical inputs? Different approaches can be given. 

- Which AI related prospects and needs for developing and deploying next–

generation observation, data assimilation, data processing, and modelling for 

environmental applications can be identified? 

- What are the current bottlenecks limiting the use of AI for EO? 

In this report, chapter 2 will explain the different definitions used when entering the world 

of artificial intelligence. An overview on the implementation of AI in various EO domains or 

projects and how it supports achieving today’s UN Sustainable Development Goals (SDGs) 

is provided in chapter 3. An overview on AI/ML approaches currently used in the (pre-) 

processing of EO data (including challenges & pitfalls) is shown in section 4. In section 5 

different types of end user needs of the EO community and the usage of AI in order support 

the exploitation of EO data are discussed. Along different AI strategies and techniques also 

bottlenecks with regard to AI implementation and the Technological Readiness Level of 

techniques and applications is considered. 

Conclusions and recommendations can be found in section 6. 
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2 Introduction of AI, ML and DL 

Artificial intelligence, machine learning and deep learning are distinctive terms, related to 

one another as shown in Figure 2. In general, AI is described as the capability of a machine 

to act as a human-being, mimicking human intelligence, by performing tasks such as object 

detection & recognition and displaying skills in problem solving, learning, planning.Machine 

learning is considered a subsection of AI, based on the idea that ML models can learn from 

input data (“training") by which they can identify patterns and make predictions and/or 

decisions. Deep learning is a large subdomain of machine learning considering highly 

complex algorithms for an increased degree of abstraction. It can handle a wide variety of 

input data and learning architectures and is based on the machine learning concept of 

neural networks. 

 

Figure 2: The relation between artificial intelligence, machine learning and deep learning. 

The difference between ML and classical data programming is that machine learning is a 

paradigm for creating models based on example data. The relation between input and 

desired output data is "learned" (trained) instead of directly programmed (Figure 3). 

The relation between the input and output is referred to as the ‘function’ or in machine 

learning often as the ‘model’. Hence machine learning should not only be considered a new 

tool in the toolbox of a researcher, but rather as another paradigm on how to solve problems 
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and understand information. This method of empirical model building typically has an 

advantage over classical ‘forward’ model building when large amounts of data are available 

and the relations between input and output data are too complex to directly identify and/or 

program. 

  

 

Figure 3: Machine learning vs. classical modeling and the programming paradigm. 

 

Machine learning consists of several learning methods:  

• Supervised learning: in supervised learning the model is provided with labeled 

training datasets. The algorithm learns the relationship between input-output 

variables, and can learn over time, improving its accuracy. The requirement of 

labeled datasets depicts the need of human interaction (Ennouri et al., 2021; 

Reichstein et al., 2019). 

• Unsupervised learning: unsupervised methods rely solely on non-labeled training 

data, it is up to the algorithm to depict underlying structures and deduce patterns 

and associations amongst the data. The goal is to get insights in the dataset, without 

predefining the nature of these relationships (Ennouri et al., 2021; Reichstein et al., 

2019). 
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• Semi-supervised learning: method using a large amount of unlabeled data, 

combined with a small amount of labeled data (Reichstein et al., 2019), increasing 

the learning accuracy (weak supervision), while limiting the high costs of extensive 

labeled datasets. 

• Reinforced learning: method using trial and error technique in order to learn 

making the correct decisions (Ennouri et al., 2021), based on the use of reward rules. 
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3 AI in the world of Earth Observation 

Artificial Intelligence (AI), Cybersecurity, Internet of Things, Big Data, High Performance 

Computing, 5G, and Software are the main digital specializations for Europe’s digital 

transformation by 2030 (Europe’s Digital Decade, 2021) (Water-ForCE, 2022b). 

The Euroconsult report (2021) identifies AI, machine learning (ML) or cloud-computing as 

trending technologies and enablers for EO applications and services. AI to EO computer 

vision applications is one of the biggest contributors, with learning algorithms able to 

reduce the error rate of detection or identification. An important aspect of ML is the 

availability of sufficient training datasets which increases the quality of the algorithms and 

results overall. For instance, for water quality assessment, the ML needs sufficient in-situ 

data which is often not available. Projects like MONOCLE or Hypernets are trying to fill the 

gap of open ground truth/training datasets. Other AI applications to EO include data 

processing, change detection, object recognition, identification, prediction and so on 

(Water-ForCE, 2022b). 

The rising amount of governmental and private projects and initiatives indicate the 

significant value of AI towards EO applications and services.  

An overview (non-limitative list) of the most important AI for EO related projects is 

presented in §3.1, providing also some specific applications making use of AI techniques. 

Section 3.2 discusses the impact of using AI for EO in achieving the UN Sustainable 

Development Goals (SDG). 

3.1 Projects and applications implementing AI for EO  

Today, a high variety of projects concerning the use of artificial intelligence for the 

exploitation of Earth Observation exist. Here, a (non-limitative) list of important projects with 

regard to the implementation of AI for societal challenges, related to EO, is given:  

• AI4Copernicus: a very important H2020 project, bridging the worlds of Artificial 

Intelligence (AI) and Earth Observation (EO) by reinforcing the AI4EU AI-on-demand 

platform with datasets, tools and services relevant to Copernicus data. This in order 

https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/europes-digital-decade-digital-targets-2030_en
https://monocle-h2020.eu/
https://www.hypernets.eu/from_cms/objectives
https://ai4copernicus-project.eu/
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to enhance the uptake of EO resources by users of various socio-economic domains, 

e.g. Agricultural sector, Health sector, Security sector, … AI4EU resources will be made 

accessible on EO data platforms (DIAS). 
• AI4EU: the AI on-demand platform of the European Union provides access to expert 

AI knowledge (incl. research), technologies, applications & tools and experts in the 

domain. They provide AI assets (algorithms, datasets, models,…) which can be tested 

on the AI4EU Experiments platform, a platform which can be used to build your own 

AI based solutions. 
• GEO.INFORMED: a 4-year project funded by the Flemish Reasearch Foundation 

(FWO) aiming to develop deep learning workflows able to transform Sentinel 2 

satellite data into ready-to-use data products for environmental policy agencies. 
• Earth Science Data Systems Program (NASA): programme focusing on the use of AI 

to increase the capability of data systems, enhance the performance of operations 

and maximize the exploitation of the NASA Earth observing data. 

• EO4society (ESA): "It pioneers new EO services and scientific discoveries, stimulating 

downstream industry growth, and supporting international responses to global 

societal challenges". The program offers workshops/training in the use of AI for EO 

services. 

• Planetary computer (Microsoft): the planetary computer provides a catalog on global 

environmental data and a variety of applications for analysis and accessing 

actionable information. 

• H2020 projects: a lot of projects incorporating the use of AI for earth and 

environmental sciences have been launched, a small selection: 

o ARTIST ARTificial Intelligence for Seasonal forecast of Temperature 

extremes 

o CLINT CLImate INTelligence: Extreme events detection, attribution and 

adaptation design using machine learning 

o Xaida extreme events: artificial intelligence for detection and attribution 

o AIDA Artificial Intelligence Data Analysis 

o … 

https://www.ai4europe.eu/
https://geo-informed.be/
https://earthdata.nasa.gov/esds/ai-ml
https://eo4society.esa.int/
https://planetarycomputer.microsoft.com/
https://cordis.europa.eu/search?q=(%2Farticle%2Frelations%2Fcategories%2Fcollection%2Fcode%3D%27brief%27%20OR%20(%2Fresult%2Frelations%2Fcategories%2Fcollection%2Fcode%3D%27deliverable%27%2C%27publication%27%20OR%20(%2Fresult%2Frelations%2Fcategories%2Fcollection%2Fcode%3D%27pubsum%27%20OR%20contenttype%3D%27project%27)))%20AND%20(%2Fproject%2Frelations%2Fcategories%2FeuroSciVoc%2Fcode%3D%27%2F23%2F45%27)%20AND%20(%27artificial%20intelligence%27)&p=1&num=10&srt=Relevance:decreasing
https://cordis.europa.eu/project/id/101033654
https://cordis.europa.eu/project/id/101033654
https://cordis.europa.eu/project/id/101003876
https://cordis.europa.eu/project/id/101003876
https://cordis.europa.eu/project/id/101003469
https://cordis.europa.eu/project/id/776262
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Due to the amount of H2020 projects they are not all described in detail, only 

the, into our opinion, most relevant ones. More information on e.g. the projects 

above can be obtained by clicking the link. 

• CENTURION: a EU project developing ground-breaking advances in Big Data and 

Artificial Intelligence, creating tools to give consistent, straightforward access to EO 

Analysis-Ready Data and AI analytics, for use by experts and non-experts alike. 

• DeepCube: DeepCube is a Horizon 2020 Space project unlocking the potential of 

big Copernicus data with Artificial Intelligence and Semantic Web technologies, 

with the objective to address problems of high environmental and societal impact. 

• CALLISTO: a H2020 project, aiming to bridge the gap between Copernicus Data and 

Information Access Services (DIAS) providers and application end users through 

dedicated Artificial Intelligence (AI) solutions. It will provide an interoperable Big 

Data platform integrating Earth Observation (EO) data with crowdsourced and geo-

referenced data. 

• AI4SAR: ICEYE Analytics builds AI/ML applications for heavy-duty image processing 

and scalable analytics. ML based applications are built for SAR processing, time 

series analysis and data handling. 

As numerous projects are focusing on the implementation of AI/ML in EO data handling and 

-processing also the amount of ML based applications is rising. Some specific applications 

are highlighted: 

- 52north: application built for the detection of permanent water surfaces based on 

SAR data to help increase the accuracy of flood detection. Solving the issue of a lack 

of optical data that often occurrsduring heavy rainfall events. 

- ESA WorldCover: Land cover and land use classification products are among the 

most important when addressing environmental problems. Often spatial resolution 

is limited for specific use cases and significant amount of time passes between 

product updates. ESA now provides a 10 m resolution global land cover map, which 

is based on ML algorithms and reduces the data processing to less than 5 days. 

https://www.centurion-project.eu/
https://deepcube-h2020.eu/
https://callisto-h2020.eu/
https://www.iceye.com/ai4sar
https://blog.52north.org/2021/09/28/water-surface-classification-in-landsat-8-and-sentinel-1-images/
https://blog.vito.be/remotesensing/release-of-the-10-m-worldcover-map
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- Destination Earth: At the heart of the DestinE project is the concept of the digital 

twin – a virtual Earth that simulates natural processes and human activity. Observing 

such replicas will help researchers understand change and help shape policies to 

mitigate extreme climate-related risks to society. Artificial intelligence (AI) and 

machine learning will make this interactive framework more flexible, efficient and 

faster. 

3.2 AI to support achieving SDG's 

As stated earlier, the implementation of AI in various domains of EO and remote sensing 

has proven to be of significant value and has been rapidly advancing the past decades. 

Machine learning techniques have become a vast component in the processing of remote 

sensing data, supporting Earth Observation approaches. EO and RS data is most often 

characterized by high spatial- and temporal resolutions and coverage, making them a viable 

tool for the indicators monitoring and measuring the progress towards the UN 17 

Sustainable Development Goals (GEO, 2017).  

Figure 4 provides an overview on the type of EO data by which the 17 SDG's can become 

measurable in a more quantitative way. More information on how EO data can contribute in 

monitoring the SDG's, complemented with specific case studies, can be found in GEO (2017). 

Whereas Andries et al. (2018) illustrates how EO data can be translated into sustainable 

development indicators. It became clear also from D1.6 of the Water-ForCE project that 

Copernicus Services hold an important role in helping to achieve the UN’s SDGs. The 

analysis in Water-ForCE D1.6 identified the possible links between EO parameters specific 

for the inland water quality and quantity and 12 of the UN Sustainable Development Goals 

(Water-ForCE, 2022). Pahlevan et al. (2022) discuss how EO can be used for monitoring inland 

water quality and consistent reporting of SDG 6.3.2/6.6.1 indicators. 

Consequently, ML is believed to also have a considerable potential in supporting the 

achievement of the different SDG's (Ferreira et al., 2020). Ferreira et al. (2020) discusses 

different ML algorithms, being among the most relevant ML techniques currently used in 

the support of EO data analysis and processing (see also §4.1). Furthermore, Ferreira et al. 

(2020) also provides overviews of applications of classification, clustering, regression and 

https://digital-strategy.ec.europa.eu/en/policies/destination-earth
https://sdgs.un.org/goals
https://sdgs.un.org/goals
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dimension reduction techniques, making use of EO data, with regard to the different SDG's 

(Table 1). 

 

 

Figure 4 : Overview on types of  EO data (columns) applicable for monitoring each of the 17 Sustainable 

Development Goals (Source: GEO, 2017). 
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Table 1: Examples of application of classification methods towards SDGs using EO data (Source: Ferreira et al., 

2020) 
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4 State of the art – literature review 

4.1 Different AI/ML approaches in EO 

Over the years, the use of ML algorithms and applications in different fields of EO and 

remote sensing has proven to be of significant value in terms of data-analysis and -

assimilation. Machine learning techniques have been applied in various domains of EO, 

Table 2 giving a non-limitative list of examples. Sun & Scanlon (2019) indicate the 

importance of AI in environmental and earth and planetary sciences compared to other 

scientific domains (Figure 5).  

Machine learning holds a lot of different techniques, each of them suitable for specific tasks 

in the EO realm.  As explained in §2 ML in general makes use of supervised and 

unsupervised experiments. Ferreira et al. (2020) gives an overview on the most relevant 

algorithms currently being applied in RS, suitable for clustering and dimension reduction 

techniques in case of unsupervised experiments and classification and regression 

approaches when applying supervised operations.   

The techniques mentioned above can be briefly described as followed (Holloway & 

Mengersen, 2018): 

• Clustering: technique to detect similarities between objects based on input 

variables and then classify the objects possessing similar characteristics into 

the same group (cluster) (unsupervised). 

• Dimension reduction: technique that reduces the number of input variables 

and ends with a set of variables capturing the most important information 

with regard to the original dataset (unsupervised). 

• Classification: technique used to allocate objects/phenomena to 

predefined groups and/or classes. The designation of an object to a group 

or class is based on the input variables that were given (supervised). 

• Regression: technique used to predict or estimate a response variable as a 

function of predictors (supervised).  
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A general overview on machine learning methods and algorithms can be found in Figure 6, 

whereas Table 3 gives an overview and brief explanation on relevant ML algorithms 

presently used in RS (EO) based on Ferreira et al. (2020), Holloway & Mengersen (2018) and 

TowardsDataScience (2022). 

 

 

Figure 5:  Percentage of documents mentioning ML in the study of Sun & Scanlon (2019) by scientific domain.  
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Figure 6: General overview on machine learning methods and algorithms (Source: TowardsDataScience; 2022).  

https://medium.com/towards-data-science
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Table 2: Overview on the implementation of AI/ML techniques in various EO domains., including project examples,  based on Salcedo-Sanz et al., 2020;  Ma et al., 

2019; Ferreira et al., 2020 and Reichstein et al., 2019. More information on ML – applications can be found in Ali et al., 2015. 

EO/remote sensing 

domain (processes) 

Example ML technique (non-limitative 

list) 

Image (data) fusion 
Fusion of regional and local information (Yang et al., 2019), fusion  of evapotranspiration 

data retrieved from multiple satellite platforms (Knipper et al., 2019), fusion of social 

media, RS data and topographic information (Rosser et al., 2017). 

DL, CNN (Ma et al., 2019), SVM, 

Fuzzy C-means, AE, NN, CNN, RF, 

boosted algorithms, Kalman 

filter, SVR (Salcedo-Sanz et al., 

2020) 

Image (scene) 

classification 

Land use and land cover classification (Ma et al., 2019), classification of crops (Wang et 

al., 2019) 

ANN, DL (e.g. CNN) (3) SVM, RF, 

NN (Ferreira et al., 2020 + 3), 

decision tree (Ferreira et al., 

2020) 

Image registration 
Geo-localization  accuracy improvement for optical satellite images (Merkle et al., 2017), 

identifying corresponding patches in SAR and optical images with CNN (Hughes et al., 

2018a) 

DL algorithms (Ma et al., 2019) 

Object detection 
Object detection optical RS (Cheng & Han, 2016), CNN models for object detection in RS 

images (Ding et al., 2018) 

DL algorithms (e.g. CNN) (Ma et 

al., 2019) 

(Causal) pattern/ anomaly 

detection 

Pattern detection by machine learning to detect smoke contamination in vineyards 

(Fuentes et al., 2019), Relation flash flood LCLU by ML (Costache et al., 2020) 

DL algorithms (e.g. CNN) (Ma et 

al., 2019; Reichstein et al., 2019) 
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Semantic segmentation 
Semantic segmentation of large-scale 3D scenes and the extraction of building 

footprints and -heights (Ma et al., 2019) 

DL algorithms (e.g. CNN) (Ma et 

al., 2019) 

Downscaling 
Drought monitoring by using downscaled (RF) high resolution soil moisture data (Park et 

al., 2017) 

CNN (Reichstein et al., 2019) 

Regression techniques 
Global gridded soil information based on machine learning (Hengl et al., 2017), Retrieval 

of Vegetation Biophysical Parameters Using Gaussian Process Techniques (Verrelst et 

al., 2012) 

RF (Reichstein et al., 2019) 

Change detection 
Land Cover change detection (Zerrouki et al., 2019), Change Detection Based on Machine 

Learning for Newly Constructed Building Areas (Wang et al., 2021). Monitoring of dam 

reservoir storage (Sorkhabi et al., 2022) 

RF (Ma et al., 2019) 

Information 

prediction/reconstruction  

Agricultural yield prediction (Yuan et al., 2020), potato yields (Akhand et al., 2016) & crop 

yields prediction (Bose et al., 2016) 

NN, CNN (Yuan et al., 2020) 

Parameter retrieval 
Vegetation parameter retrieval (Yuan et al., 2020), estimation of biomass (Jin et al., 2019), 

land surface and air temperature (Tan et al., 2019), soil moisture (Yuan et al., 2020). 

Retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and 

coastal waters (Pahlevan et al., 2020). A chlorophyll-a algorithm for Landsat-8 based 

(Smith et al., 2021). 

DL algorithms, ANN (Ma et al., 

2019), mixture density networks 

(Smith et al., 2021) 

Time series analysis 
Crop type classification using Landsat timeseries and ML techniques (Cai et al., 2018) DL algorithms (Ma et al., 2019) 

Compression of artifact 

reduction (Less common) 

Compression artifacts reduction in remote sensing (Zhang et al., 2018) DL algorithms (Ma et al., 2019) 
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Network media data 

analysis (Less common) 

New Perspectives to Improve Remote Sensing for Emergency Response, using social 

media (Li et al., 2017) 

DL algorithms (Ma et al., 2019) 
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Table 3: Overview on relevant ML algorithms presently used in RS (EO) based on Ferreira et al. (2020), Holloway & Mengersen (2018) and TowardsDataScience 

(2022). Strengths and limitations are provided (expert knowledge). 

Supervised Description Strengths Limitations 

Classification algorithm 
   

Support Vector Machines 

(SVM) 

Algorithm used for linear and non-linear 

classification problems.  

The separation of classes is denoted by a hyperplane 

in the transformed feature space. This hyperplane is 

optimized for separating the classes by the largest 

margin. The transformation of the feature space is 

performed with a kernel trick. 

• Often a powerful 

method in specific use 

cases. 

• Can include 

interactions when using 

nonlinear kernels. 

• When using a linear 

kernel and optimized 

libraries a large amount of 

variables can be used. 

• When using non-

linear kernels and many 

variables the algorithm 

becomes intractably slow. 

• To some extent a 

'black box' model. 

Classification Trees 
A classification tree is a structural mapping of binary 

decisions that lead to a decision about the class 

(interpretation) of a datapoint (observation).  

The binary decisions are performed recursively by 

iterating over the input features. Values of the input 

features with the largest impurity decrease are 

chosen as a splitting criterion of the data.  

• A very interpretable 

machine learning model. 

• Implementation is 

fast. 

• Can incorporate 

higher order interactions. 

• Typically not a very 

well performing ML method 

because of its poor 

generalization. 
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Random Forest (RF) 
Random Forest is an algorithm using several 

individual decision trees that work together as an 

ensemble. The prediction of the ensemble is more 

accurate than the predictions of the individual trees. 

While some individual trees provide a wrong 

prediction, the others (majority) provide a correct 

prediction. On average the ensemble will be still 

correct. Each individual tree makes use of input 

features that are randomly sampled out of the 

dataset. This results in unique decision trees. 

There are some ML technique variations which 

resemble RF since they are also tree ensemble 

techniques. Among these are Bagging and Boosting.  

• A powerful 

technique that often is 

among the best performing 

ML techniques 'out of the 

box'.  

• Often provides 

already good results without 

performing extensive 

hyperparameter tuning. 

• This technique is 

able to model higher order 

interactions. 

• Can be used even 

with large amount of 

variables. 

• Like most ML 

techniques this needs a lot of 

training samples. 

• There can be some 

biases when dealing with 

classification. 

• Rather slow training. 

• To some extent 'black 

box' model. 

K-Nearest Neighbour (K-NN) 
This algorithm is based on the assumption that 

similar objects (data points) exist in close proximity 

of each other (small distance). The data point is 

classified in the same group as its nearest neighbors. 

• Easy to implement 

and understand 

• Compared to other 

ML techniques such as SVM, 

RF and XGB performances are 

on the lower end. 

• It becomes very slow 

with larger datasets. 
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Naïve Bayes 
Algorithm based on the conditional probability by 

the Bayes theorem, but assuming conditional 

independence between all input features. 

• A rather fast 

algorithm.  

• Often used to get a 

base accuracy. 

• When the 

assumption hold this 

technique can perform 

better than logistic 

regression with less training 

samples. 

• The assumption of 

conditional independence 

does not often hold.  

• Compared to other 

ML techniques such as SVM, 

RF and XGB performances are 

on the lower end. 

• Compared to logistic 

regression the output scores 

are not realistic probabilities. 

Logistic regression 
A classical statistical regression technique that can 

also be interpreted as an ML technique. This works 

like a linear regression but for the purpose of 

modelling categorical target variables. This 

technique models the target probability by making 

use of the logit link (sigmoid activation). The 

optimization and inference is performed by making 

use of the maximum likelihood estimation (MLE). 

Further extensions for regularization (L1, L2) can also 

be combined with logistic regression. 

• Due to the 

statistical inference this 

technique has interpretable 

coefficients, confidence 

bands and target 

probabilities. 

• Can be very 

powerful with correct 

feature engineering. 

• Typically not the best 

performing ML model for 

complex patterns since it 

does not include higher order 

and non-linear interactions. 

Maximum Likelihood 

Classification 

Algorithm to predict the class of object X based on a 

probability distribution, given an observed dataset. 

This method is based on the assumption that the 

• A prior distribution 

can be defined. 

• A high number of 

samples for each class is 

required and often less 
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image DN (digital number) values in each of the user-

defined classes follow a multivariate normal 

probability distribution. This technique is often used 

in EO pixel analysis. 

• A standard broadly 

applied algorithm available 

in GIS software packages. 

accurate results are obtained 

than with full fletched ML 

techniques such as SVM and 

RF (eg. Volke & Abarca-Del-

Rio 2020). The assumption of 

multivariate normal 

probability does not often 

hold. 

Neural networks (NN) 
A model that consists of several regressors (neurons) 

with trainable weights and activation functions. 

These are stacked in layers. The output from one 

layer serves as input for the other. The whole 

superposition of layers can be optimized to learn to 

predict a certain target variable. This optimization is 

performed in batches and with gradient descent. 

When many layers (e.g.: more than 3) are stacked we 

refer to these neural networks as 'deep learning'. 

A popular type of deep learning architecture often 

used for the classification of images and within EO is 

the convolutional neural network. 

In classification a sigmoïd or softmax activation 

function is used in the last layer to emulate a 

probability estimate. 

• When enough data 

is present this technique is 

among the best performing 

ML algorithms. 

• Very large, out of 

memory, datasets can be 

used since the optimization 

is performed in batches. 

• Higher dimensional 

input data can be used. 

Therefore these ML 

algorithms can train on data 

like images and videos. 

• Complex learning 

systems can be engineered. 

• Large amounts of 

data is necessary. These large 

annotated datasets are rare. 

• Since most 

impressive results are 

achieved at large scales (large 

datasets and large models) 

setting up a correct system 

architecture can be 

challenging. 

• With deep learning 

long training times and lots of 

architectural and 

hyperparameter tuning is 

necessary. Therefore 
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• There are several 

pretrained networks 

available. These can be used 

for transfer learning such 

that less data is necessary 

compared to training a 

model from scratch.  

experimentation can be very 

time consuming. 

• Up till now the deep 

learning models are still 'black 

box'. 

Extreme Gradient Boosting 

(XGB) 

Just like random forest the XGB is a tree ensemble 

method. However the trees are not trained in parallel 

but are added one at a time to the ensemble and fit 

to correct the prediction errors made by prior 

models. This is a type of ensemble machine learning 

model referred to as boosting. The values of the 

splitting criterion within the trees are found by 

gradient descent. This boosts the speed of learning. 

• A state of the art 

technique which is often 

one of the best performing 

in any field it gets applied. 

• Achieves good 

results 'out of the box'. 

• Has optimized 

libraries in python which 

include fast SHAP 

calculations for model 

explanation. 

• An arbitrary loss 

function can be chosen. 

• Can handle large 

amounts of input variables. 

• Even with the SHAP 

explain ability this model is 

still to some extend 'black 

box'. 

• No higher 

dimensional data like in NN. 
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Supervised/dimension 

reduction algorithm 

   

(Linear) Discriminant 

Analysis 

This method finds a linear combination of features 

that characterizes or separates two or more classes 

of the observations. The dimension reduction 

obtained can be used for visualizing the separation 

of classes in a lower dimensional space. 

• Can be used for 

insights into the data due to 

dimension reduction. 

• Often not a very 

powerful ML technique. 

Regression algorithm 
   

Linear regression 
A classical statistical technique. It is a method for 

modelling the linear relationship between 

dependent and independent variables. 

• Due to the classical 

statistical inference 

framework, robust 

coefficient estimates and 

confidence/prediction 

bands can be obtained. This 

leads to a highly explainable 

model. 

• Often not the best 

performing regression 

method. 

Regularized regression 
To avoid overfitting and multicollinearity an inherent 

regularization can be performed. This decreases the 

model information for better generalization. 

Common types of regularization in regression are L1 

and L2. L1 regularization can be used as a feature 

selection method. Regression  with L1 regularization 

• Inherent 

regularization can be useful 

when we do not want to 

perform the feature 

selection ourselves, hence it 

• Similar as in 

regression 

https://en.wikipedia.org/wiki/Linear_combination
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is called Lasso. Regression with L2 is called Ridge 

regression. When the two types are combined it is 

called an elastic net. 

can be more automated 

than regression. 

Geographically weighted 

regression 

A classical linear regression has an assumption of 

stationarity. This model incorporates varying 

coefficients depending on geolocation. 

• Can give better 

results when used in a 

geospatial context. 

• Current 

implementations in python 

can handle limited dataset 

sizes. 

Regression Trees (RT's) 
Identical to a classification tree with the distinction 

that the outcome value is a real number, not a class 

(e.g. price of a house). 

• Similar as in 

classification 

• Similar as in 

classification 

Support Vector Regression 

(SVR) 

Based on the SVM principle, however, the best fit is 

the hyperplane containing the maximum data points 

possible. 

• Similar as in 

classification 

• Similar as in 

classification 

Neural Networks (NN) 
Similar as in classification. The last layer however 

does not have a sigmoïd/softmax activation but a 

linear activation. 

• Similar as in 

classification 

• Similar as in 

classification 

Gaussian Process 

Regression (GPR) 

Probabilistic model (nonparametric, kernel based) 

allowing to make predictions whilst providing 

uncertainty measurements for these predictions. 

• Provides 

nonparametric prediction 

bands. 

• Becomes intractable 

on large datasets. 

Kernel Ridge Regression 
Here a Ridge regression is combined with the kernel 

trick to obtain a regression in a transformed feature 

space, just like SVR. 

• Training kernel 

ridge regression is faster 

than SVR on medium sized 

• SVR scales better for 

large datasets. 
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datasets (less than 1000 

samples). 

Partial Least Square 

Regression 

A regression method with inherent dimension 

reduction, just like PCA. This dimension reduction 

can serve as a regularization. 

• Similar as in 

classification 

• Similar as in 

classification 

Random Forest 
The regression version is based on regression trees. • Similar as in 

classification 

• Similar as in 

classification 

Extreme gradient boosting 
The regression version is based on regression trees. • Similar as in 

classification 

• Similar as in 

classification 

 

Unsupervised Description Strengths Limitations 

Clustering algorithm 
   

Gaussian Mixture Models 
A generalization to K-means by providing a 

probability for each data point to belong to a certain 

cluster based on the covariance structure of the data 

and assuming a multivariate gaussian distribution of 

the clusters. 

• Probability 

estimates. 

• This algorithm 

requires the number of 

clusters to be specified. 

K-Means 
The K-Means algorithm clusters data by trying to 

separate samples in n groups of equal variance, 

minimizing a criterion known as the inertia or within-

cluster sum-of-squares. 

• It scales well to 

large number of samples 

and has been used across a 

large range of application 

• This algorithm 

requires the number of 

clusters to be specified. 
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areas in many different 

fields. 

Clustering/dimension 

reduction algorithm 

   

Self organising map 
Technique to rescale a high-dimensional dataset (ρ 

variables, n observations) to a 2-dimensional 

representation. The technique makes use of "nodes" 

that are randomly placed in the dataset. An 

observation i of the dataset (n) will select its closest 

node after which the node will move to its direction 

(neighboring nodes will be move as well but in a 

lesser extent, this is not the case for K-Means). This is 

an iterative process taking place for each 

observation i of n. This iterative process results in the 

nodes being the center of the thereby defined 

clusters. Topological relation of the original dataset 

is preserved. 

• The output 

provides a clear insight.  

• No number of 

clusters to be defined in 

advance. 

• A lot of 

hyperparameters have to be 

defined in advance. 

Density based Spatial 

Clustering of Application 

with Noise (DBSCAN) 

Clustering technique using a minimum distance 

criteria and a minimum density of neighboring 

points (within this predefined distance) approach. 

Technique that identifies outliers and doesn't 

incorporate them in a cluster. 

• It does not require 

one to specify the number 

of clusters in the data a 

priori, as opposed to k-

means. 

• It fails in case of 

varying density clusters. 

• It does not work well 

in case of high dimensional 

data. 
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• It can find 

arbitrarily-shaped clusters 

• It has a notion of 

noise,  is robust to outliers 

and can detect outliers 

Hierarchical Cluster Analysis 
Algorithm to classify similar objects in a non 

predefinednumber of clusters, each object being its 

own cluster at the start (bottom-up/agglomerative 

approach), to be merged with another similar cluster 

in the next step. A hierarchy clustering is build this 

way. Clustering can also be top-down (divisive).  

• The advantage of 

hierarchical clustering is 

that it is easy to understand 

and implement. The 

dendrogram output of the 

algorithm can be used to 

understand the big picture 

as well as the groups in your 

data. 

• The weaknesses are 

that it rarely provides the best 

solution, it involves lots of 

arbitrary decisions, it does not 

work with missing data, it 

works poorly with mixed data 

types, it does not work well on 

very large data sets, and its 

main output, the dendrogram, 

is commonly misinterpreted. 

Fuzzy C-Means (FCM) 
Clustering technique (similar to K-Means) by which a 

datapoint can belong to more than 1 cluster (based 

on degrees of membership). 

• It gives the 

flexibility to express that 

data points can belong to 

more than one cluster. 

• A-priori specification 

of the number of clusters. 

With lower value of β we get 

the better result but at the 

expense of more number of 

iteration. Euclidean distance 

measures can unequally 

weight underlying factors. 
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Dimension Reduction 
   

Principal component 

analysis (PCA) 

Technique that reduces the amount of features in a 

dataset (lower dimensionality) making it more easy 

to analyze and visualize, however losing some 

information. 

• Benefits of PCA 

include reduction of noise in 

the data, feature selection 

(to a certain extent), and the 

ability to produce 

independent, uncorrelated 

features of the data. 

• Low interpretability 

of principal components. 

• The trade-off 

between information loss 

and dimensionality reduction. 

 

T-Distributed Stochastic 

Neighbour Embedding 

Method for visualizing high dimensional data in a low 

dimensional space (2D/3D). It is a non-linear 

dimensionality reduction technique. 

• Handles Non Linear 

Data Efficiently 

• Preserves Local 

and Global Structure 

• Computationally 

Complex 

• Non-deterministic 

• Requires 

Hyperparameter Tuning 

• Noisy Patterns 

Isomap 
Non-linear dimension reduction technique used for 

low dimensional embedding. 

• Handles Non Linear 

Data Efficiently 

• Preserves “true” 

relationship between data 

points 

 

• Computationally 

expensive 

Autoencoder 
An autoencoder is neural network architecture with 

a decoder architecture on top of a encoder 

• Autoencoders can 

be a powerful method to 

• Apart from the fact 

that large annotated datasets 
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architecture. This autoencoder is trained on data to 

predict itself after encoding.  Hence the encoder can 

be used to produce a lower dimensional embedding 

in which the optimal information is retained 

pretrain neural networks on 

unsupervised data. 

Unsupervised datasets are 

typically very large datasets 

and hence very large 

models can be trained for 

optimally encoding 

information. The encoder 

can be decoupled and used 

for a supervised training 

task which hence require 

much less annotated data. 

• Since the technique 

involves neural networks it 

can be used on datatypes 

with higher dimensions. 

• They are often used 

as part of larger AI systems 

such as GAN's 

are not needed, similar issues 

arise as in neural networks in 

classification 
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4.2 Challenges & pitfalls of the implementation of ML 

The use of ML systems for EO purposes has been increasing rapidly the past decade. 

Although a lot of ML algorithms and ML based applications are currently in operation by 

research institutes or the industry, different challenges with regard to ML systems have 

been identified. 

Scientific papers (Jentzsch et al., 2021; Nascimento et al., 2019; Sculley et al., 2014; Shelter et 

al., 2018) mention a variety on challenges in ML implementation, however they can be 

generally grouped as: 

• Conceptual challenges: challenges on the vision of how a ML model should look 

like and how to handle a model (model validation, model retraining, …) 

• Data management challenges: challenges in structuring and handling the data in 

an effective and long-term sustainable way 

• Scientific challenges: pitfalls and difficulties encountered processing the data 

Figure 7 provides an overview on the challenges identified for each group, based on the 

works of Jentzsch et al. (2021), Nascimento et al. (2019), Sculley et al. (2014) and Shelter et al. 

(2018). 

 

Figure 7: Overview of ML challenges, conceptual- data management- and scientific challenges. * Indicates 

challenges stressed most in literature. 
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Model validation is considered a conceptual challenge by Shelter et al. (2018), since 

decisions on how to revalidate the model, how to define the train/validation/test split and 

backtesting are not always straightforward. How to define the train/validation/test split all 

depends on the scenario, e.g. a forecasting situation will have a different split then other 

scenarios. And although backtesting of the models over time is necessary to validate their 

accuracy (due to changes in data, code, software dependency, …), it implies the models 

should have been trained on the same training, testing and validation dataset, using the 

exact same code. Retraining of models occurs when new data events take place in the 

dataset. Shelter et al. (2018) gives the example of a new public holiday or promotional 

activity in the retail demand forecasting domain. This new event can have a serious impact 

on the accuracy of the model. However, managing evaluation and training data over time, 

when ML pipelines are continuously changing is a challenge (Shelter et al., 2018). 

Multi language code is considered a significant engineering challenge since it is hard to 

keep all components consistent and to perform error checks across the language barrier. 

Such code bases are difficult to handle later onwards since different component setups 

have to be orchestrated to work as one (Shelter et al., 2018). Different skill levels of users 

might pose problems as well, in certain cases leading to suboptimal ML modelling (Shelter 

et al., 2018). 

The biggest challenge stressed in literature, concerning data management, is the efficient 

organization of a database structure. A lot of effort needs to be spent to structuring the 

data, creating a solid base for the model (Nascimento et al., 2019). Experts indicate that 

organizing ML projects and experiments from scratch is very hard, maintaining a clear and 

comprehensive overview being even more difficult when the system keeps growing and/or 

multiple developers are involved (Jentzsch et al., 2021; Nascimento et al., 2019). Since every 

minor change e.g. in the code, results in a new experiment, managing all these experiments 

and be able to keep track of the metadata, workflows and lineage of models/different ML 

pipelines involved is a major challenge (Jentzsch et al., 2021; Nascimento et al., 2019; Sculley 

et al., 2014). 
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More specifically, ML pipelines most often comprise different operations (data integration, 

feature transformation, model training), each based on different abstractions. In complex 

analytic problems, dataflow abstraction is often very limited, since models are implemented 

as black boxes. It is thereby very difficult to abstract metadata from a specific pipeline 

(Shelter et al., 2018). Experts pointed out is hard to keep track which adaptations were made 

in which experiment leading to which result. Furthermore, the high frequency of updates of 

tools and programming packages increases the effort needed to keep the ML pipelines up-

to-date and aligned (Jentzsch et al., 2021). 

Experts also indicate resources to thoroughly document the experiments and 

workflows/metadata are often scarce. Tools to organize experiments and answer 

metadata related questions (e.g. what part of the data set was used?) exist, though their 

feasibility is questioned by the experts (Jentzsch et al., 2021). 

Documentation on "how to handle the data" is only very limited available. There is no best 

practice and no real standardized processes on what type of tasks should be performed in 

this phase, e.g. checking missing data, verifying inconsistencies, thresholds to use, … No real 

guidelines are provided, resulting in every expert deciding on how to proceed in his/her 

own manner (Jentzsch et al., 2021; Nascimento et al., 2019) 

Concerning infrastructure, high transfer costs were mentioned to transfer existing code 

from one platform to another (e.g. Caffe - TensorFlow) (Jentzsch et al., 2021). 

Finally inefficient coding, originating from "glue code", deficiencies in ML system 

configuration options or the presence of "dead" experimental codepaths ("experimental 

code as a conditional branch within the main production code") poses even more challenges 

(Sculley et al., 2014). 

A third category of challenges comprises the "scientific" challenges, the most important 

challenge being the availability of training datasets (labeled or unlabeled). In various 

scientific papers the importance of these datasets is stressed, their limited availability being 

indicated as a significant obstacle (Ma et al., 2019; Reichstein et al., 2019; Sagan et al., 2020).  
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ML systems are also often referred to as black boxes since it is difficult to get a grip on the 

processes taking place between input and output data in a system, e.g. the 

opacity/interpretability of a DNN as explained by Jentzch et al. (2021) and Reichstein et al. 

(2019). 

Other challenges are the impact of hyperparameters, correction cascades, undeclared 

consumers, hidden feedback loops, data dependencies, feature entanglement and 

prediction uncertainties. More information on these specific challenges can be found in 

Jentzch et al. (2021), Reichstein et al. (2019) and Sculley et al (2014). Ultimately, predictions 

of deep learning models, even though the model has a high accuracy, might be implausible 

due to the presence of observational biases in the data and/or extrapolations. Therefore, 

domain specific knowledge should be integrated in the model to establish theoretical 

constraints (rules on physics of the Earth System) (Reichstein et al., 2019). 
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5 Implementation of AI for optimal 

exploitation of EO data 

This section discusses the ways in which AI can augment the exploitation of EO data and 

possibly create innovative approaches to support or solve EO end user needs. It results from 

a 2-step work process in which first end user needs were identified and secondly, the ways 

in which AI can be of support to the EO community and its user needs analyzed. Since 

terminology such as “end user” and “user needs/requirements” will be frequently used in 

the consecutive sections, the following definitions are provided: 

• End user: in this deliverable an end user can be part of the wider base of businesses, 

institutional players, consumers, industries, research institutes, governments, and 

nonprofit organizations.  However, end users are experts in either EO, AI or both and 

are actively working in the field of data-processing, -assimilation, -management or 

application building (EO/AI related).  

 

• User needs and requirements: User needs and requirements describe any function, 

constraint, specification, observation, wish list, service or other property that must 

be provided to satisfy the current and future needs of the user. They can also relate 

to potential existing gaps between users' aims and their current situation, which is 

reflected by user difficulties and opportunities, as well as the context of use, which 

comprises the intended users' attributes, current tasks, and environment.1  User 

requirements are created from the perspective of the user. Any function, constraint, 

or other property that must be given to meet the user's needs is referred to as a user 

need2 (Water-ForCE, 2022a). 

 

 

 

1 Kujala, Sari et al. “Bridging the Gap between User Needs and User Requirements.” (2001). 

2 Abbott, R. J. An Integrated Approach to Software Development. Wiley, New York, 1986. 
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5.1 End user needs of the EO community 

Based on the output deliverables of WP’s 1 to 5 and the insights obtained from several 

Water-ForCE workshops, an extensive list of end user needs and -requirements was created. 

Of this list, a selection was made, considering 4 user need categories for which AI might be 

able to offer new techniques or innovative approaches. The selection was also based on the 

weight of the end user need (how many people indicated the problem) and the potential 

impact an “AI solution” of the user need would have on the EO and modelling community. 

It concerns user needs related to data (pre-) processing, data characteristics (e.g. spatial 

resolution) and data retrieval. 

Table 4 gives an overview on the selected end user needs and what they encompass. In the 

following sub-sections each of these topics is discussed in detail, describing observed 

difficulties and providing examples. 

Table 4: Overview on selected end user needs. 

User need 

category 

Description 

Pre-processing  

- Optical The pre-processing of optical remotely sensed data includes a 

variety of steps, depending on the data that is used. However, 

considering the existing needs, especially enhanced algorithms 

for atmospheric corrections (atmospheric absorption, sky-glint, 

sun glint,…) are in high demand and therefore listed here as an 

important user need. 

- Radar The EO community indicates the complexity of SAR backscattered 

signals and how it can quickly become overwhelming. Pre-

processing steps are considered highly complex and although 

there is a high potential for implementation of AI more extensive 

research is needed in this field.  
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Resolution Different or limited spatial, temporal and spectral resolutions are 

often the limiting factor for the utilization of satellite image data 

for different applications and therefore often indicated as an 

important user need. Enhancement of these resolutions may lead 

to higher quality products. 

Parameter retrieval The need for a higher variety in parameter products (e.g. more 

groundwater products) was indicated as an important user need 

by the EO community. ML approaches are already of significant 

importance in the field of parameter retrieval and believed to have 

a high potential impact when further developed. 

Image 

classification 

Image classification plays an important role in exploiting EO data 

at all levels. However, due to the characteristics of RS data such as 

high dimensionality and relatively small amounts of labeled 

samples available, performing RS image classification faces great 

scientific and practical challenges. Literature and experts 

indicated the potential role of machine learning in tackling those 

issues. 

 

5.1.1 Pre-processing 

OPTICAL  

The pre-processing of optical remotely sensed data includes a variety of steps that depend 

on the data that is used. For example, for Sentinel-2, at Level-1B, the OLCI instrument 

provides radiance measurements of the Earth's surface in the visible and near infra-red 

spectrum. These measurements are accurately calibrated Top-Of-Atmosphere (TOA) 

radiances, annotated with geo-referencing data and observation geometry parameters. The 

first pre-processing step aims to convert Level-1 TOA radiance into reflectance values that 

are relevant for geophysical properties. This step is followed by e.g. corrections for gaseous 

absorption (Atmospheric Correction), pixel classification (in particular, water/land/cloud) 
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and retrieval of the total column water vapor content. This deliverable focuses on the user 

need Atmospheric corrections. 

Atmospheric correction (AC) is the process of compensating for atmospheric scattering 

and absorption.and for surface reflection at the air-water interface (i.e., sky-glint and sun-

glint) from the signal measured at the Top of Atmosphere (TOA). This compensation is 

essential for the accurate retrieval of aquatic reflectance and downstream science products 

(e.g., near-surface concentration of chlorophyll-a (Chla), and Total Suspended Solids (TSS)). 

AC over open water is carried out adequately since quite some time as mentioned by the 

International Ocean Color Coordinating Group (IOCCG) in 2010. AC over coastal and inland 

waters however still leads to large uncertainties in derived satellite data products. 

AC algorithms are situated largely in two categories (Pahlevan et al., 2021):  

- A two-step process where  the effects of Rayleigh and gaseous absorption are first 

removed and then aerosol contribution is approximated and,  

- Machine Learning techniques.  

A comparison was done by Warren et al. (2019) of six commonly used AC algorithms for 

Sentinel2 (Acolite, C2RCC, iCOR, l2gen (also known as SeaDAS), Polymer and Sen2Cor). 

C2RCC is based on ML, the others are two-step techniques. Although all are considered 

mature, all still showed very high levels of uncertainties and low R2 against in situ 

datasets above coastal and inland waters. Especially the Red and NIR bands show poor 

results which is of concern for inland water monitoring. These bands are paramount to 

the determination of key water parameters.  

Another point of attention is that multispectral images can be affected by adjacency 

effects up to 20km inland of a shoreline (Pan et al., 2022; Warren et al., 2019). Out of the 

six algorithms mentioned above, only iCOR has a built-in adjacency effect corrector. 

Additionally, according to (ACIX-Aqua: A global assessment of atmospheric correction 

methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters - 

ScienceDirect) AC algorithms should incorporate more representative aerosol types 

and/or bio-optical models depending on the underlying mechanisms of the AC 

processors.  
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RADAR 

Rapid-revisit Synthetic Aperture Radar (SAR) satellites in Low Earth Orbit (LEO) are 

promising thanks to their observational persistence, low cost and their ability to “see in the 

night”.  But the complexity of the backscattered signal can quickly become overwhelming 

and prevent data-scientists to include SAR data in their analyses. Pre-processing the data is 

the most complex part of the work. Depending on the research question at hand, pre-

processing can include steps like applying an orbit file, radiometric calibration, multilooking, 

de-bursting, reducing speckle noise and terrain correction (Meyer). 

Preprocessing techniques achieve the effects of suppressing background redundancy and 

enhancing target characteristics by processing the size and gray distribution of the original 

SAR image, thereby improving the downstream application. Speckle noise for example is a 

result of the interference of many waves of the same frequency, having different phases 

and amplitudes, which add together to give a resultant wave whose amplitude, and 

therefore intensity, varies randomly. This causes blurring and leads to loss of the information 

of the objects. 

 

5.1.2 Resolution 

Different and limited spatial, temporal and spectral resolutions are the limiting factor for the 

utilization of the satellite image data for different applications. Unfortunately, because of 

technical constraints, satellite remote sensing systems are faced with a tradeoff between 

the resolution types. E.g., constellations that offer high spectral resolution are often faced 

with medium or low spatial resolutions. Image fusion, harmonization and super-resolution 

are just some examples of techniques that aim to overcome the trade-off issue.  

Additionally, the concept of Virtual Constellations (VC) is gaining interest within the science 

community owing to the increasing number of satellites/sensors in operation with similar 

characteristics. Sen2Like, for example, offers a solution for harmonizing and fusing Landsat 

8/Landsat 9 data with Sentinel-2 data. Sen2Like processes a large collection of Level 1/Level 

2A products and generates high quality Level 2 Analysis Ready Data (ARD) as part of 
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harmonized (Level 2H) and/or fused (Level 2F) products providing high temporal resolutions 

(Saunier et al., 2022). In the era of artificial intelligence, S2L also has the potential to improve 

the model training processes by providing radiometrically consistent spatiotemporal 

information and might be helpful for many applications in the field.  

5.1.3 Parameter retrieval 

Machine learning has been widely used as a powerful tool for groundwater and surface 

water applications.  It can be applied to predict water quality, optimize water resource 

allocation, manage water resource shortages, etc. Many approaches have been tested: SVM, 

CNN, DNN, PLS but several challenges remain in fully applying machine learning 

approaches in this field. Often it is not a one size fits all situation. Applying specific 

algorithms that respond to the peculiarities of a region can deliver better results. E.g. for 

surface chlorophyll concentration in the Black Sea, the Ocean Colour Thematic Assembly 

Center of the Copernicus Marine Service (CMEMS*) use a neural network closer to the coast 

and an analytical algorithm in the open ocean. Moving further from the coast, the neural 

network gets further from its comfort range and the analytical algorithm becomes more 

useful. 

Machine learning is usually dependent on large amounts of high-quality data. Obtaining 

sufficient data with high accuracy in water treatment and management systems is often 

difficult owing to the cost or technology limitations. Furthermore, the conditions in real 

water treatment and management systems can be extremely complex, the current 

algorithms may only be applied to specific systems, which hinders the wide application of 

machine learning approaches. The implementation of machine learning algorithms in 

practical applications requires researchers to have certain professional background 

knowledge. 

To overcome the above-mentioned challenges, this field needs more advanced sensors 

applied in water quality monitoring to collect sufficiently accurate data to facilitate the 

application of machine learning approaches. Also the feasibility and reliability of the 

algorithms should be improved. Lastly it asks for more interdisciplinary talent with 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/water-purification
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/feasibility
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knowledge in different fields (both EO and AI) to develop more advanced machine learning 

techniques and apply them in engineering practices. 

5.1.4 Image classification 

Image classification plays an important role in exploiting EO data at all levels, going from 

water/land/cloud detection to object recognition and creating Land-Use-Land-Cover (LULC) 

maps. However, due to the characteristics of RS data such as high dimensionality and 

relatively small amounts of labeled samples available, performing RS image classification 

faces great scientific and practical challenges. Some state of the art technologies are 

discussed below.   

• Object-based image analysis (OBIA): discipline devoted to partitioning remote 

sensing (RS) imagery into meaningful image-objects and assessing their 

characteristics through spatial, spectral and temporal scale (Ma et al., 2019).  

Nowadays a patch-based strategy is a generally accepted method, which integrates 

CNNs with OBIA. The critical issue with this approach is how to determine the values 

of the relevant parameters (e.g., patch size), because classification accuracy is largely 

affected by these parameter values. 

 

• Semantic segmentation: Semantic segmentation aims to assign labels to each 

pixel in an image. Facilitated by deep CNNs, especially by the end-to-end fully 

convolutional network (FCN), interest in semantic segmentation of remote sensing 

images has increased in recent years. Still several issues need to be addressed. 

Among them are problems with imbalanced classes, trade-offs between 

downsampling and accurate boundary localization and overcoming the difficulty of 

high variety of objects, especially in high spatial resolution images. (Ma et al., 2019) 

 

• Scene classification/Object detection: Applications that are frequently confused. 

Scene classification is a procedure to determine the image categories from 

numerous pictures. Object detection aims to detect different objects in a single 

image scene. Current studies prefer to extract certain specific type(s) of objects 
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(airplanes, cars, etc.) from high-resolution images through a fixed window size, either 

through scene classification or object detection (Ma et al, 2019). However, more data 

and object types of objects are encountered in practical remote-sensing 

applications—for example, medium-resolution Landsat data and Sentinel data. 

Therefore, how to design the effective algorithms to overcome the difficulties 

emerging from different-scale objects (the different type of objects often appears at 

different scales in remote-sensing images, and also the same object can have 

variable size in different-scale remote sensing images) is an urgent problem in both 

subfields (Deng et al., 2018). 
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5.2 The implementation of AI with regard to EO community 

needs 

Understanding the needs of the EO community, the following sub-chapters try to provide 

an overview on current best practice and possible approaches to tackle those posing 

challenges in EO data-assimilation and -modelling.  

5.2.1 Consultation of stakeholders and knowledge experts 

Although a literature review was carried out, presenting a lot of different ML algorithms 

suited for various applications in EO domains (§4), also the EO and AI community was 

consulted on how AI can support in addressing end user needs and which specific AI/ML 

techniques can be used for specific problems. In order to get a clear view on how and for 

which type of applications/processes stakeholders use AI techniques, several initiatives 

were taken: 

- Face-to-face meetings with stakeholders. Twenty-two companies were selected by 

their core business, all related to the use of AI/ML for research projects or product 

development. The meetings create the opportunity to have a discussion on how 

they apply AI within the company business and which techniques/algorithms they 

use. In general, how a company/institute relates to the use of earth observation data 

and/or the use of artificial intelligence for the exploitation of EO data. Response 

levels however were very low. Annex 1 provides an overview of the companies that 

were contacted. 

o Survey: due to low response levels on the Face-to-face meetings a survey 

was sent to 5 additional companies/institutes (An overview on the 

companies and survey questions can be found in Annex 2). 

 

- Workshop participation (1): in order to get feedback from the EO-AI community on 

the implementation of AI for atmospheric corrections (considered an important end 

user need), questions were posed to the public and speakers during the Water 

Quality Continuum Atmospheric Correction Workshop on (20 October 2022, ± 55 

participants). Questions were e.g.: 

https://waterforce.eu/workshops/water-quality-atm
https://waterforce.eu/workshops/water-quality-atm
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o AI is already used in several methodologies for AC. Are there still gaps? What 

are the gaps? What are recommendations? 

o Is sunglint still an issue? Do you think AI techniques can help to detect or 

correct sunglint? 

 

- Workshop participation (2): Participation in the workshop “6th WGNE workshop on 

systematic errors in weather and climate models – part Machine learning/AI and 

data assimilation” to gather information on how AI is used for systematic errors at 

this moment.  

 

- Water-ForCE Webinar: In the webinar “Technical Needs for Copernicus Inland 

Water Monitoring Service” (26 October 2022, ± 35 participants) the goal of WP5.3 

“Exploring the use of Artificial Intelligence (AI) to Optimize the Exploitation of 

satellite EO and modelling data" was introduced. A Mentimeter poll was organized 

to capture the audience feedback on the use of AI for EO. Questions and responses 

can be found in Annex 3.  

Despite the attempts to collect feedback from the EO-AI community, response levels were 

in general (very) low. However, some conclusions can be made: 

- AI/ML techniques are most commonly used for atmospheric corrections, regression 

analysis, clustering, parameter retrieval and identification of related parameters 

(based on the output of the poll (Figure 8), survey (Annex 2) and face-to-face 

meetings). 

- Widely used AI/ML algorithms are (Figure 9): 

o Neural Networks (NN) 

▪ CNN ( e.g. for image classification, object detection, image 

segmentation) 

▪ FRCNN (for better downsampling, upsampling and "super 

resolution" creation) 

o C2RCC (e.g. atmospheric corrections) 
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o Generative Adversial Networks (to enhance spatial resolution of satellite 

images) 

- The end user needs identified in §5.1 (parameter retrieval, atmospheric corrections 

and enhanced resolution) are confirmed by the stakeholders and experts. 

- The main limitation and/or bottleneck for the use of ML are the availability of labeled 

datasets and the capacity of finding the correct tools/choosing the correct 

technique. Also the explainability of the results proves to be an issue. 

- ML offers an extensive amount of possible algorithms and techniques, however, 

there are no clear “guidelines” in how to choose the best technique as often the goal 

of the study is very different and several options are possible for the same problem. 

Initiatives for implementing AI in EO data assimilation and -processing are rising but 

information is scattered and users don’t always succeed in accessing relevant data 

or information platforms. 

The above mentioned implementation purposes, techniques and algorithms and limitations 

are validated by literature as stated in sections 4.1 and 4.2.  

 

 

Figure 8: Responses of the Mentimeter poll to the question “In which cases do you use AI/ML techniques”. 
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Figure 9: Responses of the Mentimeter poll to the question “Which AI/ML algorithms do you use most?”. 

 

5.2.2 AI techniques and direct or first-order impacts versus indirect impacts 

Pinpointing how AI could help accelerate the process of servicing the scientific community 

by developing data products that answer to their user needs is ambiguous. The impacts of 

AI techniques situate themselves from direct or first-order impacts to indirect or second or 

third order effects. Many examples can be given of which here are presented a few.  

Image registration is a method where two or more images, captured by different sensors, 

or at different times, are aligned. Image fusion entails the actual integration of images. 

Image registration is a step in which the source image is mapped with respect to the 

reference image (Viergever et al., 2016). This is a fundamental task in several remote sensing 

tasks such as image fusion and change detection (Zhao et al., 2021). Hence, it follows that 

this field could benefit from AI on multiple levels: from registration (1st) to fusion (2nd) and 

change detection (3d).  

Sunglint (user need AC) for example, significantly impacts the detection capacity of many 

remote sensing applications. While strong glint cannot be dealt with and affected pixels 

need to be excluded from further processing, weak wave glint can potentially be corrected 

and allow the extraction of meaningful information from the affected pixels. Many classical 

approaches to remove sunglint assume a negligible marine contribution in the NIR/SWIR 

which is invalid for turbid environments. (Giles et al., 2021; Tapouzelis et al., 2021) Moreover, 

some applications such as the detection of Floating Marine Litter (FML) use exactly these 

wavelengths. Correction of the signals therefore inevitably impact the performance of the 

detection methods (Tapouzelis et al. 2021). The future of using spectral remote sensing to 

detect floating marine litter is equally dependent on the pre-processing of images than on 
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the used classifiers. Sunglint correction is one of the main image pre-processing steps. 

Hence enhancing sunglint correction methods by implementing ML could significantly 

affect the future accuracy of this field. In this case, implementing ML has a direct effect on 

the user need sunglint. 

Successful parameter retrieval and object detection in coastal and inland waters is 

affected by adjacency effects and atmospheric correction. Meanwhile also atmospheric 

correction algorithms are affected by adjacency effects. Furthermore, it is often overlooked 

that AC algorithms that are based on ML need proper optical specification of the underlying 

water and atmosphere conditions (Brockman et al., 2016; Schiller et al., 1999). These 

algorithms are trained on synthetic datasets created by radiative transfer models. Hence it 

is clear that the successful training of these algorithms is largely dependent on the accurate 

outcomes of the RTMs and that improvements in the RTMs will lead to more reliable AC 

algorithms.  

Such complex interacting effects make it difficult to compare over different case studies, 

different algorithms, different data sources. It could be argued that at least for some of the 

user needs identified, the appropriate answer should not be to try and advise a one-size-

fits-all solution (see §5.2.5). For those examples it could be better to develop a useful tool 

that helps scientists to develop a workflow that is tailored to their research question(s) at 

hand.  

5.2.3 Bottlenecks implementing AI 

Although AI is a powerful tool, its implementation and reaching its full potential is limited 

by different factors. The most important causes are discussed in detail in the next 

paragraphs and are based on stakeholder and expert consultations. 

Benchmark datasets 

Only in comparison to existing knowledge can method performance be assessed. For that 

purpose, benchmark datasets with known and verified outcome are needed. High-quality 

benchmark datasets are valuable and may be difficult, laborious and time consuming to 

generate (Sarkar et al., 2020).  
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A good benchmark dataset checks at least a few of the following boxes;  

o Open/discoverable/accessible  

o Has enough features 

o Is labeled  

o Is well documented 

o Is accompanied by a demonstration (e.g. a script or notebook) 

One of the main problems affecting large-scale remote sensing data processing is the lack 

of labeled samples. This becomes more evident when training deep learning models, which 

require a considerable number of labeled data to obtain good generalization capability. 

Collecting field data or manually creating labeled data is an operational burden. Moreover, 

also the quality and the representativeness of the training samples is important. It is 

interesting to explore more learning strategies for collecting labeled data in a fast and 

efficient way (e.g., active learning or transfer learning). Also cartographic products, 

thematically available on different scales represent a valuable source of information to 

generate large scale reference data.   

Ocean Scan, for example, aims to provide an answer to the main challenge in training AI 

algorithms for the purpose of monitoring the water surface for the presence of plastics. In 

this area, the lack of in-situ ground truth data that allow to reliably label images is a 

bottleneck to advance in this field. Ocean Scan is a labeled database created to promote 

collaboration and research in the field of marine litter. It collects global in-situ observations 

of marine litter from whomever wants to contribute and associates them to their 

corresponding Earth Observation images from different missions. Currently it includes 

images from Sentinel 1 -2- and -3. 

The CALLISTO data repository engages the scientific community in the available 

opportunities for Copernicus data by generating annotated datasets that actually help their 

work. It is a collection of datasets from 4 themes: agriculture monitoring, water quality 

assessment, satellite journalism and land border change detection. It contains analysis 

ready remote sensing data with and without labels, in-situ and ground level datasets and 

geo-referenced labels.  

file:///C:/Users/balto/Desktop/VUB/WaterForCE/Wang,%20L.,%20Dong,%20Q.,%20Yang,%20L.%20(2019)
https://callisto-h2020.eu/
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Volume of data 

Copernicus is producing several terabytes of data every day. Moreover the analysis 

techniques going from simple statistics to the level of deep neural networks are numerous. 

The large volume of data combined with the potential of ML and DL has the potential to 

develop new applications rapidly and at large scale. However, the volume of the data and 

the expert knowledge needed to handle ML pipelines for EO data, transcends the capacity 

of many data scientists to extract meaningful information from them. One example is the 

analysis of SAR data which for many reasons could be a highly valuable source of 

information thanks to its ability to “see in the dark”. The amplitude product of SAR is 

convenient for ML applications, such as object detection, as it ‘feels’ like traditional visible 

imagery. However it represents only a small portion of the entire SAR information content. 

Ignoring the phase content means that the complex physics of the backscattered SAR 

signal is entirely lost. However, trying to interpret the phase signal quickly becomes 

overwhelming to casual and expert data scientists. Hence, the EO community needs 

technologies from the ICT field.  

DEEP CUBE combines mature and new ICT technologies, such as the Earth System Data 

Cube, the Semantic Cube, the Hopsworks platform for distributed Deep Learning, and a 

state-of-the-art visualization tool and integrates them to deliver an open and interoperable 

platform that can be deployed in several cloud infrastructures and High-Performance 

Computing, including the cloud-based platforms providing centralized access to Copernicus 

data (DIAS). According to expert knowledge it is important to further develop and centralize 

information, data, workflow pipelines and visualization tools on platforms in order to stay 

competitive with large cooperation with abundant resources such as Google, OpenAI and 

DeepMind. Such platforms should be user friendly and tailored to bring together both casual 

scientists and experts from the field of AI and EO.   

Explainability and causality 

Artificial intelligence methodologies such as neural networks do not give any direct 

explanations why a given prediction or outcome was achieved by the network (Sarker et al., 

2017). This is due to the complicated transformations of input data and the algorithms 

https://www.deepcube.com/
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themselves (Sarker et al., 2020). The need to explain these outputs is called explainable 

artificial intelligence (XAI). XAI has many faces which include casual explainability which 

seeks to answer why a particular input gave the output in question and expert approach 

which looks how the AI model produced the output. According to expert knowledge, to 

obtain an element of explainability hence understanding of complex AI algorithms, 

traditional technologies such as knowledge graphs are used. In earth observation studies, 

in data analysis process, KGs encode human knowledge in machine-readable formats, 

which can be applied to aid data management and analysis (Ma, 2022). Moreover, by 

applying AI techniques on data selected through knowledge graphs, a keen understanding 

of the discrimination process of the knowledge graph can provide an insight on how an AI 

model achieved a given output (Ma, 2022).   

Causality refers to a process, state, or a cause, which contributes to the production of 

another event, process or state, an effect, where the cause is partly responsible for the effect, 

and the effect is partly dependent on the cause. Causality is an important concept in 

studying the dynamic surface of our living planet however its integration in artificial 

intelligence methodologies used to study earth observation is still young. In a study by 

Otgonbaatar et al. (2022), the use of a causal directed acyclic graph could provide valuable 

insight on the cause-effect relation between cloud coverage and the agriculture land 

change as opposed to water quantity. However, this study used a simple causal structure 

where the causal relations are known. Where causal relationships are unknown and more 

data is used, discovering casual relations can be a problem. Therein lies one of the 

challenges affecting the integration of causality in AI models for earth observation. 

These same factors controlling the potential use of AI, identified by stakeholders and 

experts, were also indicated in the literature review in section 4.2.  

 

5.2.4 Technological Readiness Level 

Technological Readiness Levels (TRL, originally developed by NASA) are used to determine 

the maturity of a technology. It offers a consistent way to evaluate the maturity of different 

available technologies and compare them amongst each other. Classic TRL's consist of 9 
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levels, level 1 providing the basic principles whilst level 9 considers the actual deployment 

of a technology/system (most mature level). Lavin et al. (2021) introduces a TRL framework, 

streamlined towards ML workflows. The Machine Learning Technological Readiness Levels 

(MLTRL) used to go from basic research on ML methods towards productization and 

deployment, by Lavin et al. (20121), are presented in Figure 10. 

 

Figure 10: Technological Readiness Levels streamlined towards ML workflows (Lavin et al., 2021). 

An issue perceived by the expert community (based on the consultation of stakeholders and 

literature review) are the existing limitations of the robustness of the AI formalisms currently 

used for a wide variety of EO applications. Moreover it seems that the EO community keeps 

turning to the same AI formalisms and that a large portion of the AI spectrum does not reach 

them. Many studies don’t surpass the level of Proof of Concept (TRL 4) because the AI and 

EO community lack each other’s experience and knowledge. The processing of SAR data is 

an example of this. SAR data can’t easily be used for machine learning due to the intensive 

pre-processing and the required domain knowledge.  

Furthermore, both communities are still in need of more and better Big Data management 

platforms with sustainable cloud solutions. This is illustrated by the fact that, also European 

scientists still turn to Google and Amazon platforms. It should be explored how DIAS 

platforms can further address these demands.  

To these ends ICECUBE, an initiative by ICEEYE, is a first foray into open source data 

abstraction and tooling for SAR data handling and datacube creation. ICECUBE has rapidly 

https://icecube.wisc.edu/
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evolved from a PoP (TRL 2) in 2021 to applying the library for many case studies and recently 

came out with a toolkit to build your own ICECUB. It’s also working on a docker for ESA’s 

SNAP software.  

Furthermore, natural language processing is finding its way to aid to this need. A consortium 

with among others the university of Athens is working on a toolkit that processes the 

requirements of a user in natural language an delivers half-processed images that meet 

their needs. This project is currently still at its infancy.  

The Sen2Like processor for a VC of Landsat and Sentinel data, is currently entering its pre-

operational phase (TRL6) and will be offered to the EO community as an “on demand” 

processor. Validation tests on its accuracy have demonstrated that the quality information 

should be included as part of the delivered products. Improved quality information 

facilitates the use of multi-temporal data. 

The commonly used AC algorithms that were described earlier in present report (Acolite, 

C2RCC, iCOR, l2gen, Polymer and Sen2Cor) are all considered mature but are still under 

active development. For open water common AC processors are adequate but for inland 

and coastal waters improvement is necessary. 

5.2.5 Strategy & approach 

Implementing ML algorithms in EO applications and data processing is one way to lead to 

higher quality applications or end user products. However, by tackling some of the 

bottlenecks (as identified in 5.2.3) of the EO data processing pipeline by using AI techniques, 

quality of data processing pipeline can be enhanced resulting in a cascading effect towards 

applications, final products and modelling results. 

Example 1: when more labeled datasets would be available, better results for image fusion 

etc. can be obtained leading to higher resolutions and therefore higher quality and more 

accurate data products. 

 Recommendation: more open-source benchmark datasets 

Example 2: by streamlining existing platforms and initiatives with regard to data download, 

ML pipelines and supporting documentation the use of AI for EO purposes can be optimized. 
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 Recommendation: focusing on the need of integrating current platforms/projects 

Example 3: by connecting the EO and AI community and assuring a better integration of 

the 2 domains difficulties with e.g. SAR data processing can be (partially) solved. 

Example 4: Reducing the black box factor (increased explainability) could increase the user 

uptake of ML algorithms by EO experts. 

 

On top of enhancing current important EO algorithms, support with the development of an 

entire data processing pipeline given the numerous data sources, -techniques and 

visualization options should be considered.  

 

The above findings (previous sections) stress the importance of a holistic approach, instead 

of trying to find one-size-fits-all solutions. 
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6 Conclusions & recommendations 

Based on literature and stakeholder and expert consultations the following conclusions are 

drawn: 

- The number of projects and initiatives focusing on the need of the integration of 

EO data processing, -assimilation and application building and artificial intelligence 

techniques is significant and rising. 

 

- The experts of the EO community acknowledge the high potential of AI for EO. 

However, at this moment each expert (or expert group) tends to have its own “go 

to practices” and they often have difficulties in explaining the outcomes of the AI 

based model. A lot of techniques and strategies are tested but TRL’s tend to remain 

low in general (exceptions of high TRL ML based products exist). 

o A better integration of the EO and AI community would be beneficiary to 

solve these issues. 

 

- Bottlenecks limiting the use of AI for optimal exploitation of EO data are the lack 

of labeled datasets, the volume of data and the explainability/causality of 

events.  

 

- Deep learning techniques have proven to immensely push the mining of aquatic 

remote sensed data forward.  However, deep learning algorithms are challenging, 

especially to scientists that are unexperienced in this field. Data platforms tailored 

to developing ML pipelines for EO data should consider adding example code or 

even clearn and (to the possible extent) easy to understand video tutorials 

elaborating on commonly encountered issues when dealing with machine/deep 

learning algorithms.  

 

 



 

62 

 

- Standard validation protocols must be established in order to clean in situ 

datasets. Also these could be included in the current DIAS platform in the form of 

notebooks/tutorials/SOPs,.. 

- Standard satellite data processing guidelines are oftentimes missing for experts 

from various backgrounds. This would be a big leap forward in order to train ML 

algorithms with higher accuracy.  

- Validated in situ data or dataset builders to create ready-to-use training datasets 

(i.e., in situ and satellite data pairing) might help AI researchers which might not have 

EO expertise to create more advanced AI/ML methods.   

- The lack of streamlined platforms and initiatives with regard to data download, 

ML pipelines and supporting documentation for the use of AI for EO purposes can 

be optimized. The platforms that exist today are not equipped to guide researchers 

from all walks of life, with all levels of experience to develop a plan of action. For 

researchers that are new to e.g. de DIAS platforms it is a knot to untangle that may 

push them to other well-established platforms. 

- It’s often too complicated to find the (expert) relevant information and training 

material to make optimal use of the existing platforms. Although this information is 

available, it’s scattered and not tailored to the different skill levels of the experts. 

One could think for example about a bot guiding new users through the DIAS 

platforms, adding links to information that is tailored to different levels of expertise, 

adding example code for example in the form of notebooks that are well 

documented,… 

- Focus on a holistic approaches could be beneficial instead of trying to find one-

size-fits-all solutions. One could think for example about developing SOPs or 

dashboards that help researchers develop their research plan. E.g. in the case of AC, 

we think it is necessary to further improve on the techniques discussed above and 

push science forward. However, one could argue that helping a researcher choose 

the optimal, already existing algorithm for their research question at hand would in 

the meantime be a significant step forward. The collection and pre-processing (i.e., 

geometric and atmospheric correction) of satellite data is a time-consuming 
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operation. The pre-processing steps and algorithms applied might differ between 

various implementations and affect the performance of the implemented AI 

method.   
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Annex 1: Overview of 22 consulted companies for EO-AI community feedback. 
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Annex 3: Results of the Mentimeter poll during the Water-ForCE webinar on the 26th of 

October, 2022. 
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Annex 1: Overview of 22 consulted companies for EO-AI community feedback. Responsive companies are indicated in green. 

Name company Description core business Link 

Amigo Climate data analytics. https://amigoclimate.com/#NUA  

Artificial Intelligence Data 
Analysis (Horizon2020) 

AIDA developed a new open source software called 
AIDApy written in Python (a free language) and capable of 
collecting, combining and correlating data from different space 
missions.  

Home | AIDA (aida-space.eu)  

ARTificial Intelligence for 
Seasonal forecast of 
Temperature extremes 

Project seeks to improve insights into climate predictability at the 
seasonal timescale, aiming to increase the performance of 
existing prediction systems. 

https://cordis.europa.eu/project/id/101033654  

CLImate INTelligence: 
Extreme events 
detection, attribution 
and adaptation design 
using machine learning 
(Horizon2020) 

Involved in the development of an Artificial Intelligence 
framework composed of Machine Learning techniques and 
algorithms to process big climate datasets for improving Climate 
Science in the detection, causation, and attribution of Extreme 
Events (EEs), namely tropical cyclones, heatwaves and warm 
nights, droughts, and floods. 

https://climateintelligence.eu/  

CloudFerro Provides cloud computing services with a focus on big data sets. 
Contributed to WEkEO and operates CREADIAS.  

https://cloudferro.com/en/  

DigiFarm AS / ALTYN Sarl 
/ Farmen Gard 

Sen4Weeds project will develop a solution for automated large-
scale detection and mapping of weeds in agricultural fields using 
remote sensing and artificial intelligence.  

https://ai4copernicus-project.eu/sen4weeds-
automatic-detection-and-mapping-of-in-field-weeds/  

Earth Science Data 
Systems 

Program which promotes the use AI and recognizes its potential 
to significantly advance existing data systems capabilities, 
improve operations, and maximize the use of NASA Earth 
observing data. 

https://www.earthdata.nasa.gov/esds/ai-ml  

ECMWF Earth observation, linked to AI4Copernicus https://www.ecmwf.int/en/computing  

https://amigoclimate.com/#NUA
https://www.aida-space.eu/
https://cordis.europa.eu/project/id/101033654
https://climateintelligence.eu/
https://cloudferro.com/en/
https://ai4copernicus-project.eu/sen4weeds-automatic-detection-and-mapping-of-in-field-weeds/
https://ai4copernicus-project.eu/sen4weeds-automatic-detection-and-mapping-of-in-field-weeds/
https://www.earthdata.nasa.gov/esds/ai-ml
https://www.ecmwf.int/en/computing


 

74 

 

EO Science for society EO Science for society of ESA https://eo4society.esa.int/  

European union satellite 
centre 

Geospatial intelligence - exploitation and analysis of imagery and 
geospatial information to describe, assess, and visually depict 
physical features and geographically referenced activities on 
Earth. 

https://www.satcen.europa.eu/services/research_tec
hnology_development_and_innovation  

GEO.INFORMED Develops deep learning workflows that can transform Copernicus 
Sentinel data into the information that is needed by 
environmental policy agencies. 

GEO.INFORMED – Remote sensing & Deep 

learning for environmental policy (geo-

informed.be) 

Institute of Informatics & 
Telecommunications: 
Computational 
Intelligence Laboratory 

AI for geoapplications. https://www.iit.demokritos.gr/labs/cil/  

Institute of Informatics & 
Telecommunications: 
Software & Knowledge 
Engineering Lab 

Reinforcing the AI4EU platform by advancing earth observation 
intelligence, innovation and adoption. 

https://www.skel.ai/skel-projects/#!  

JOANNEUM RESEARCH - 
DIGITAL 

Institute for Information and Communication Technologies. 
Develops applied high tech solutions for the following markets: 
Mobility, Space, Industry, Security & Defence, Energy & 
Environment, application-oriented research partner. 

https://www.joanneum.at/en/life/research-
areas/weather-risk-analysis-and-management  

Management of Data 
Information and 
knowledge group, 
Department of 
informatics and 
telecommunications  
National and 

Involved in artificial intelliegence for earth observation, have 
developed programes used in the copernicus program. 

AI Team (uoa.gr)  

https://eo4society.esa.int/
https://www.satcen.europa.eu/services/research_technology_development_and_innovation
https://www.satcen.europa.eu/services/research_technology_development_and_innovation
https://geo-informed.be/
https://geo-informed.be/
https://geo-informed.be/
https://www.iit.demokritos.gr/labs/cil/
https://www.skel.ai/skel-projects/#!
https://www.joanneum.at/en/life/research-areas/weather-risk-analysis-and-management
https://www.joanneum.at/en/life/research-areas/weather-risk-analysis-and-management
https://ai.di.uoa.gr/
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Kapodistrian University of 
Athens 

Planetary computer Catalog of global environmental data with intuitive APIs Home | Planetary Computer (microsoft.com)  

Remote sensing 
laboratory, university of 
Trento 

Reinforcing the AI4EU Platform by advancing earth observation 
intelligence, innovation and adoption of advanced machine 
learning techniques 

https://rslab.disi.unitn.it/contact/  

SCAVIHO – Scalable 
Vegetation Index and 
Harvesting Forecaster 

Focuses on NVDI and precision agriculture, linked to 
AI4Copernicus 

https://ai4copernicus-project.eu/scaviho-scalable-
vegetation-index-and-harvesting-forecaster/  

SISTEMA GmbH and cmc-
consulting 

The “Super Resolution for Climate Crisis Context – SR4C3” 
AI4Copernicus project aims at bringing innovation to the climate 
crisis sector by enhancing the remote sensing based technological 
tools through the application of Artificial Intelligence 

http://www.sistema.at/wp/  

Solaïs  and Transvalor Through the project satelite images prediction with deep 
learning, this project will Develop satellite images forecasting 
techniques using advanced Deep Learning so as is to improve 
short term solar irradiation forecasts in the 15 minutes to 6 hours 
range 

https://ai4copernicus-project.eu/sen4weeds-
automatic-detection-and-mapping-of-in-field-weeds/  

TNO TNO is a leading partner in the Dutch AI Coalition.  https://www.tno.nl/en/about-tno/our-
people/alexander-eijk/  

Trasys Has worked with ESA and VITO on earth observation projects http://www.trasysinternational.com/projects/  

VTT VTT is a research, development and innovation partner for 
organizations in the space industry. 

https://www.vttresearch.com/en/industries/space-
industry 

 

 

https://planetarycomputer.microsoft.com/
https://rslab.disi.unitn.it/contact/
https://ai4copernicus-project.eu/scaviho-scalable-vegetation-index-and-harvesting-forecaster/
https://ai4copernicus-project.eu/scaviho-scalable-vegetation-index-and-harvesting-forecaster/
http://www.sistema.at/wp/
https://ai4copernicus-project.eu/sen4weeds-automatic-detection-and-mapping-of-in-field-weeds/
https://ai4copernicus-project.eu/sen4weeds-automatic-detection-and-mapping-of-in-field-weeds/
https://www.nlaic.com/
https://www.tno.nl/en/about-tno/our-people/alexander-eijk/
https://www.tno.nl/en/about-tno/our-people/alexander-eijk/
http://www.trasysinternational.com/projects/
https://www.vttresearch.com/en/industries/space-industry
https://www.vttresearch.com/en/industries/space-industry
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Annex 2: Companies consulted by means of a survey (+survey questions below). Responsive companies are indicated in green. 

Name company Description core business Link 

Artys S,r,l EO4NOWCAST – Earth Observation for Severe Weather 
Hazard Nowcasting ambition is to realise and demonstrate an 
operational and replicable approach to assess severe weather 
events and related hazards in the short term (nowcasting) built 
upon the synergy between EO and rainfall monitoring 
products.  

https://www.artys.it/en/  

Impact observatory Impact Observatory brings AI-powered algorithms and on-
demand data to sustainability and environmental risk analysis 
for governments, industries, and markets. 

Impact Observatory  

Latitudo 40 Urbalytics - The proposed project aims at demonstrating the 
possibility of applying machine/deep learning algorithms on 
Sentinel 2 images in order to estimate the Land Surface 
Temperature. 

https://www.latitudo40.com/technology/  

STAM S.r.l. / Gter S.r.l. / 
La SIA S.p.A 

4th open call AI4Copernicus winner, Their winning project is 
AI-RON MAN – AI-based wildfiRe predictiON for the risk 
MANagement of TLC Infrastructures. 

  

3D Executive 
Management System / 
List Geoinformatika / 
Profida 

AI4 E2O.Green will develop an Intelligent next gen deep/green 
tech Platform powered by AI to enable Urban Green and Golf 
Space Management Companies to effectively manage 
irrigation, assets, operations and land fields with a powerful 
combination of satellite and drones imagery as well as the AR 
and computer vision connected models. 

https://ai4copernicus-project.eu/4th-round-of-open-calls-
meet-the-winners/  

 

https://www.artys.it/en/
https://www.impactobservatory.com/
https://www.latitudo40.com/technology/
https://ai4copernicus-project.eu/4th-round-of-open-calls-meet-the-winners/
https://ai4copernicus-project.eu/4th-round-of-open-calls-meet-the-winners/
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Survey questions: 
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Annex 3: Results of the Mentimeter poll during the Water-ForCE webinar on the 26th of October, 2022. 
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