Value of satellite EO-enhanced models for policy and decision making

Project Identification

Project Full Title	Water scenarios for Copernicus Exploitation
Project Acronym	Water-ForCE
Grant Agreement	101004186
Starting date	01.01.2021
Duration	36 months

Document Identification		
Deliverable number	D5.4	
Deliverable Title	Integration of satellite EO and modelling	
	aspects for providing better decision support	
	and operational management, including	
	recommendations	
Type of Deliverable	Report	
Dissemination Level	Public (PU)	
Work Package	WP5	
Leading Partner	IHE Delft	

History of Changes			
Date	Versi on	Comments	
10.10.2022	V0	First Concept (IHE Delft)	
22.12.2022	V01	Contributions to the deliverable: IHE Delft, geoEcoMar	
	V02	Revised Version by following partners:	
	V03	Final Version: IHE Delft	

List of Acronyms		
ACube4Floods	Flood Event Monitoring and Documentation	
	enabled by the Austrian Sentinel Data Cube	
ADCP	Acoustic Doppler Current Profiler	
AIS	Automatic Identification System	
АРА	Portuguese Environment Agency	
ARERA	Italian Regulatory Authority for Energy,	
	Networks and Environment	
ARCOS	Arctic Observatory for Copernicus SEA	
BEYOND	Centre of EO Research and Satellite Remote	
	Sensing	
BSH	British Federal Maritime and Hydrographic	
	Agency	
CDR	Climate Data Record	
CGLS	Copernicus Global Land Service	
CEMS	Copernicus Emergency Management Service	
CENIA	The Czech Environmental Information Agency	
CLMS	Copernicus Land Monitoring Service	
CNES	French Space Agency	
CNRS	Centre National de la Recherche Scientifique	
C3S	Climate change service	
DEM	Digital Elevation Model	

DEMARINE-2	German Nationales Forum Fernerkundung
	und Copernicus
DGT	Portugese Direção-Geral do Território
DINOloket	Portal for subsurface data in the Netherlands
	(for groundwater)
DMI	Danish Meteorological Institute
DREAL	Regional authorities (Directions Régionales
	de l'Environnement, de l'Aménagement et du
	Logement)
DRMKC	European Disaster Risk Management
	Knowledge Centre
DWD	German Weather Service
ECMWF	European Centre for Medium-Range Weather
	Forecasts
ECVs	Essential Climatic Variables
EDO	European Drought Observatory
EEA	European Environmental Agency
EELIS	Estonian Nature Information System
EFAS	European Flood Awareness System
EnSAG Phase II	German Centre for Natural Ecosystems
	and Ecosystem Transitions
ELY Centres	Finland Centre for Economic Development,
	Transport and the Environment

EmissionSEA	Emission assessment, reduction and			
	avoidance of ships by evaluating AIS signals			
EMOWAF	Project EO and Monitoring for better Water			
	Management and Flood Prevention in			
	Bulgaria			
EMS	Emergency management Service			
EnMAP	Environmental Monitoring and Analysis			
	Programme			
EO	Copernicus Earth Observation			
EOP-Danube	Earth Observation Platform for the Greater			
	Danube Region			
EPAMA	The Public Entity for the Management of the			
	River Meuse and its Tributaries			
EPA	Environment Protection Agency			
ERA-5	fifth generation ECMWF reanalysis for the			
	global climate and weather for the past 4 to			
	7 decades			
ESA	European Space Agency			
ESOTC	European State of the Climate			
ESTHub	National Satellite Data Centre			
EU-DEM	EU- Digital Elevation Mopdel			
FAPAR	Fraction of Absorbed Photosynthetically			
	Active Radiation			
FAO	Food and Agriculture Organization			

FCUP	Framework for Copernicus User Uptake
FD	Flood Directive
FRM	Flood Risk Management
FRMP	New geodata to improve water
GeoWAM	German project on Ensuring safety on
	seaways with remote sensing
GEUS	Geological Survey of Denmark and Greenland
GHG	Green House Gassess
GIS	Geographic Information System
GLDAS	Global Land Data Assimilation System
GMTED 2010	Global Multi-resolution Terrain Elevation Data
GPCP	Global Precipitation Climatology Project
GRDC	Global Data Runoff Center
GRUMO	National Groundwater Monitoring Network
HIMIOFOTS	Hellenic Integrated Marine Inland Water
	Observing Forecasting and Offshore
	Technology System
НОВЕ	Danish Hydrological research laboratory
IGiK	Institute of Geodesy and Cartography
IO PAS	Polish Academy of Sciences
IPMA	Portuguese Institute for Sea and Atmosphere
IDAs	Inter-communal Development Associations
ISPRA	Italian Institute for Environmental Protection
	and Research

IMGW-PIB	Polish Institute of Meteorology and Water			
	Management - National Research Institute			
INRAE	France's new National Research Institute for			
	Agriculture, Food and Environment,			
JRC	Joint Research Centre			
KelpMap 2.0	Atmosphere correction for scientific use of			
	EnMAP and Sentinel-2 data in turbid coastal			
	waters			
KCEO	Knowledge Centre on Earth Observation			
LAKESAT	Lake surface temperature satellite data			
LAWA	German Federal/state working group on water			
LEGMC	Latvian Environment, Geology and			
	Meteorology Centre			
LGS	Lithuanian Geological Survey			
LHS	Lithuanian Hydrometeorological Service			
LOOP	Agricultural Catchment Monitoring Program			
LSWT	Lake Surface Water Temperature			
LU/LC	Land Use Land Cover			
MODIS	Moderate Resolution Imaging			
	Spectroradiometer			
MICKA	Czech environmental information portal			
NARW	National Administration Romanian Waters			
NASA	National Aeronautics and Space			
	Administration			

NCW	National Council for Water			
NEPA	National Environment Protection Agency			
NEREUS	Network of European Regions Using Space			
	Technologies			
NIHWM	National Institute of Hydrology and Water			
	Management			
NIRD	National Institute for Research and			
	Development			
NOA	National Observatory of Athens			
NOVANA	National Monitoring Program for Aquatic			
	Environment and Nature			
OPW	Office of Public Works			
OVF	General Directorate of Water Management			
RBM	River Basin Management			
RBMP	River Basin management Plan			
ROSA	Romanian Space Agency			
Rrs	Remote Sensing Reflectances			
RS	Remote Sensing			
RSS Hydro	Luxembourg Institute of Science and			
	Technology			
SAR	Synthetic-aperture radar			
SDFE	Danish Agency for Data Supply and			
	Infrastructure			
SDGs	Sustainable Development Goals			

Sentinels4Marine	Plastic Waste - Pollution of aquatic				
	ecosystems with plastic waste: Global and				
	local monitoring using satellite-supported				
	methods				
ShipTac	Integrative use of X- and C-band SAR data				
	for tactical ship route planning in arctic waters				
SNIG	National Spatial Data Infrastructure				
SOS	Satellite-based Operational Planning				
SSW	Special Secretariat for Water				
SWAT	Soil & Water Assessment Tool				
SWOT	Surface Water and Ocean Topography				
SYKE	Finish Environmental Institute				
Tarkka	Finish Satellite images services				
TanDEM-Ice	Glacier monitoring in high Asia using				
	TanDEM-X InSAR and other earth				
	observation sensors				
UBA	German Environment Agency				
UNOSA	United States Office for Space Affairs				
UoMs	Units of Management				
VESI	Inter-agency water portal				
WP	Work Package				
WALOUS	Wallonia Land use and land cover mapping				
	for flood risk management				
Water JPI	European Water Joint Programming Initiative				

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

WEO	Water Earth Observation
WFD	Water Framework Directive
WISA	Water Information System Austria
WRI	Water Research Institute

Table of Contents

Executive Summary	13
1. Introduction	15
1.1. Water-ForCE	15
1.2. Purpose of this document	17
1.3. Content of the Report	17
2. EU institutions use of RS in modelling for policies	19
2.1. Overview of Copernicus services used for inland waters	19
2.1.1. Copernicus Land Monitoring Service (CLMS)	20
2.1.2. Copernicus Emergency Management Service (CEMS)	21
2.1.2.1. Early warning and monitoring monitors	22
2.1.2.2 On-demand mapping	23
2.1.3. Climate change service (C3S)	24
2.2 European institutions and policies	25
2.2.1 European Civil Protection	25
2.2.2. Joint Research Centre (JRC)	26
2.2.3. European Environment Agency (EEA)	27
3. Use of RS for water-related policy and decision making at EU	national

level

11

30

Water - ForCE

3.1. Introduction to water management in EU member states in	relation
to Remote Sensing / Copernicus data and services	30
3.2. Water policy and management and the use of RS / Cop	pernicus
data and services in EU member states	35
National Institute for Aerospace Technology (INTA)	92
3.3. Opportunities and challenges for further use of RS/Copernic	us data
and services in water management at national level in EU	97
4. International use of RS	102
4.1 International initiatives to streamline the use of EO	102
4.2 Available RS data for water quantity and water quality m	odelling
	104
4.3 Global Initiatives to disseminate Earth Observation data/prod	lucts for
water challenges	108
4.4 Integration of EO in water quantity and quality modelling a	at policy
level	113
5. Conclusions	114
References	115
A) Citations	115
B) Links to websites mentioned in deliverable	117

Executive Summary

The Horizon2020 project Water scenarios For Copernicus Exploitation (Water-ForCE) will develop a Roadmap for Copernicus Inland Water Services. The Roadmap will assess the current state of water related services provided by six existing Copernicus Services and will provide an optimal way forward for satisfying different user and stakeholder communities.

The current report provides the current state of the art in modelling using remote sensing (RS) services and data for water quantity and quality for decision support and policy. The report gives special attention to Copernicus services, in order to better formulate recommendations for the Water-ForCE final roadmap.

The analysis carried out in preparing this report focussed on three main pillars: EU institutions and their policies; the specific approaches by national policies in all EU countries and approaches at international level. The analysis presented in this deliverable is based on previous deliverables of WaterForCE, such as D3.3., and D1.4 and D1.6, looking at how the Copernicus data can be more effectively used in developing and delivering the next versions of the directives.

Present deliverable summarized the efforts of different countries, Eu agencies and International agencies to integrate EO data in policies, through modelling for more effective use of current and future Copernicus data.

The analysis pointed out that the reasons for slow uptake of RS in general and/or Copernicus data in water management are primarily in the characteristics of the sector. Water is critical resource for so many different socio-economic activities, there are many different water management aspects: water resources assessment, planning development and protection (both surface water and groundwater), public water supply, waste water treatment and disposal, management of water-related disasters such as floods and droughts, agricultural water use (irrigation and drainage), water for energy production, inland navigation, water-related ecosystem services, tourism and recreation (including bathing waters), etc. This situation has resulted in distribution of water management across different organizations, agencies and actors, at different government level (national, regional, municipal), with complex inter-relationships, which sometimes hamper collaboration and use of integrated approaches. Because of this necessarily distributed management model, introduction of RS / Copernicus data in the diverse water management activities is still challenging.

1. Introduction

1.1. Water-ForCE

Remote Sensing methodologies have seen major improvements over the last decade, but their uptake is still limited, owing to a lack of skills within the water sector regarding RS; sometimes limited confidence and overall lack of concerted effort to support their validation and integration. In EU the Copernicus programme was initiated to fill spatial and temporal gaps in availability of environmental data for management and decision making.

In this context the Horizon 2020 project Water-ForCE (Water scenarios for Copernicus Exploitation) is developing a Roadmap to better integrate the entire water cycle within the Copernicus services, thereby addressing needs and requirements from the user community, the current disconnection between Remote Sensing / in-situ observations and upgrade of the modelling algorithms.

The Roadmap will contain:

- Analysis of user communities' landscape
- Analysis on how Copernicus water services can support policy development and monitoring of their implementation
- Gap analysis of the Copernicus water-related service portfolio
- Identification of future higher-level biogeochemical products
- Technical requirements for future Copernicus sensors to improve the water-related service portfolio

- Proposal for organising in situ measurement networks to validate
 Copernicus Remote Sensing and modelling products and to
 provide complementary data not collected by Remote Sensing
- Proposal on how to define relationships between Core Services and Downstream services
- Recommendation on the evolution of a water service (via the creation of a new service, or the improvement of water services under current Copernicus services, or through a better integration of water-related products)

The Water-ForCE project is coordinated by the University of Tartu (Estonia) with 20 participating organisations from all over Europe. It connects experts in water quality and quantity, in policy, research, engineering and service sectors. The project is divided into eight work packages (WP), each of them focusing on a specific problem and/or target of the Copernicus services. The project started on 1st of January 2021 with a duration of three years.

This report is part of Work Package 5 (WP5) "Modelling and data assimilation" which overall objective is to build on the knowledge acquired in WP1 to WP4 to identify the potential for future use of different satellite EO data in modelling of water resources for support of decision makers towards adaptive management of water resources and policy implementation. In particular Available satellite EO data were evaluated

within D5.1, followed by a guide on how models should be adapted to use existing Copernicus data, including the use of Artificial Intelligence (AI), reported in D5.2. The findings were integrated in the present report showing the value of satellite EO-enhanced models for policy and decision making.

1.2. Purpose of this document

The current report provides the overview on how satellite EO and modelling aspects are used for providing better decision support and operational management, including their use in policy implementation at EU level and internationally.

The report gives special attention to Copernicus services, in order to better formulate recommendations for the Water-ForCE final roadmap. A series of challenges, to which solutions might be found through the roadmap, are stated in section 3.3 of this report.

1.3. Content of the Report

This document starts with an introduction presenting the scope of WaterForCE project, followed by an overview of the policies implementation at the EU level, based on three available Copernicus services for inland water. Three main EU institutions (EEA, JRC and European Civil Protection) are presented along with the directives they are improving through their work, analysis and implementation. Third

section of the report presents what is the situation of using Copernicus data at national level. Fourth chapter presents overall use of RS at international level and the efforts in use of RS in policies.

The report ends with the conclusion section followed by references. Due to high number of links to sites where policies and national implementation of them is presented, along with use of RS, a special section with all links is provided after References.

2. EU institutions use of RS in modelling for policies

This chapter of the report provides insights on how Copernicus satellite data are used by European institutions in their policy-making process, first introducing the relevant data and services used, and then giving detailed use cases per institution. In the context of this paragraph, European institutions are considered the Directorate General departments, executive agencies, and services who are using Copernicus Earth Observation (EO) data to develop policies for inland water, from a quantitative point of view. It is important to mention that only the Copernicus services and products relevant for water quantity policies are presented, discarding those datasets or services that are not related to the scope of this report (i.e. Copernicus Atmosphere, Marine, Security, European Forest Fire Information System).

2.1. Overview of Copernicus services used for inland

waters

The considered Copernicus services in this present analysis of policies for inland waters, along with the EU institutions supporting these services are presented below.

2.1.1. Copernicus Land Monitoring Service (CLMS)

The CLMS is jointly coordinated by the Joint Research Centre (JRC) and the European Environmental Agency (EEA) and it provides geographical information on land cover based on satellite imagery for several environmental applications, including applications in the fields of water management and climate change. CLMS products are used by many national and international agencies for a wide variety of purposes. The principal user among the European institutions is the EEA, which uses the data provided by CLMS to monitor the general status of water at the European level to check whether new policies are needed. The satellitebased datasets used by the EEA are:

- Urban Atlas, which provides Land Use Land Cover (LULC) information in urban environments and it is used to assess the extents of floods;
- Riparian Zones, providing information on the transitional areas occurring between land and freshwater ecosystems, which are adopted to define potential flood management measures;
- Water and Wetness, which shows the occurrence of water and wet surfaces from 2009 to 2018 and it is employed to assess the morphology of large rivers.
- Other satellite-based products such as Corine Land Cover, developed by CLMS, are employed by other Copernicus

services for hydrological modelling (which are detailed in this report in the section on the Emergency and the Climate Change services). Moreover, details on how the EEA uses CLMS data are given in section 2.2 related to European institutions.

2.1.2. Copernicus Emergency Management Service (CEMS)

The aim of the CEMS is to provide valuable information to support stakeholders in making decisions during natural or manmade disasters (e.g. floods, droughts, fires), by constantly monitoring Europe and forecasting the occurrence of such events. In case a disaster is forecasted, the CEMS alerts the national authorities interested, which in turns can ask CEMS for specific additional information to support their decision making. CEMS data and products are also used in non-emergency situations by the European Disaster Risk Management Knowledge Centre (DRMKC). Detailed information on DRMKC is given later in this report in section 2.2, where JRC is presented. The DRMCK uses the information to observe and understand disasters genesis and evolution, and then use the information gained to develop new policies to prevent and reduce disaster risks.

The emergency management service has two main components, the ondemand mapping and the early warning and monitoring service, each with a different scope.

2.1.2.1. Early warning and monitoring monitors European ongoing situation both in terms of floods and droughts, through the developed European Flood Awareness System (EFAS) and the European Drought Observatory (EDO), respectively. Both services are developed by the JRC.

EFAS is a European operational service developed to monitor and forecast flood events, mainly in large-scale and transboundary river basins. It is LISFLOOD spatially distributed hydrological model based on their developed by JRC. A series of applications of this model for policies are presented at JRC site. Although the primary focus of EFAS is in forecasting floods in real time, LISFLOOD model is also used in a monitoring context, using observations as meteorological forcing input, and climate change effects, using climate projections to assess as meteorological forcing. The output of the model, mainly flows and soil moisture, are used to monitor droughts (more details in the EDO description), and to monitor the general state of the climate (see the Climate Change Service section). Moreover, LISFLOOD hydrological model is also used by JRC to produce studies in anticipation and evaluation of European policies.

EDO uses both in-situ and satellite observations to compute a set of indicators for detecting drought events of different nature (meteorological, hydrological, agricultural) and drought impacts on soil, water and vegetation. In addition, EDO provides reports with the analysis of extreme drought events in Europe, based on the indicators computed. This information is used by the European Civil Protection and Humanitarian

Aid Operations and the Disaster Risk Management Knowledge Centre (DRMKC) to develop policies aimed at preventing and reducing disaster risks, by EEA to monitor the status of water resources. The satellite-based datasets used in EDO the MODIS Fraction of Absorbed are Photosynthetically Active Radiation (FAPAR), used to compute anomaly of vegetation condition (agricultural drought), and Corine Land Cover, layer, EU-DEM all employed to Imperviousness run LISFLOOD hydrological model and compute the low flow index and soil moisture anomaly (hydrological and agricultural drought respectively). Important to mention that though Sentinel has its own FAPAR data, EDO uses MODIS which is not a Copernicus product.

2.1.2.2 On-demand mapping provides maps of the disaster upon request of a stakeholder (usually a national government) to gather more information on the severity and extension of the event. The mapping can be done both during and after a disaster occurred. In the former case, satellites are pre-tasked to acquire new images in a specific area where a disaster has been forecasted. Pre-tasking needs are related to major challenges in using satellite data and are detailed in EFAS pre-tasking website, as it is for example the case of large-scale floods are forecasted by EFAS. Users can request to map the territory through satellite images before and after the disaster occurred and to make retrospective analysis, to help risk preparedness and the development of recovery plans. The users of the on-demand service are both national governments and EU institutions,

which need to acquire pre and post-disaster satellite images to understand the evolution of the event and use the information learnt to develop European policies for increasing preparedness and disaster risk reduction.

2.1.3. Climate change service (C3S)

C3S was established to provide constant and reliable information related to climate change to the European Union, in order to support the European development of climate change mitigation and adaptation policies. This task is fulfilled by both analysing future climate projections and monitoring the past and present climate, using observational data. In the latter case, C3S produces, in collaboration with ECMWF and on behalf of the European Commission, monthly climate bulletins and annual reports on the European State of the Climate (ESOTC). The annual reports are focused on Europe and the Arctic and provide an overview of the climate both at the seasonal and annual scales, also giving updates on the current situation and on a set of long-term key climate indicators. The satellite datasets used to produce annual reports on ESOTC are: Corine Land Cover, Imperviousness layer, EU-DEM all employed to run LISFLOOD hydrological model and compute river discharges; C3S soil moisture v202012 dataset based on the PASSIVE data record, used to estimate soil moisture during floods, droughts and heatwaves; Global Precipitation Climatology Project (GPCP), which formally is not developed by C3S, however available as a C3S service, to monitor precipitation; Level-4 Sea

Surface Temperature, used for the analysis of extreme precipitation events; various satellite products used to produce the ERA-5 reanalysis dataset.

2.2 European institutions and policies

2.2.1 European Civil Protection

European Civil Protection (ECP) is part of the Directorate General department of Civil Protection and Humanitarian Aid Operations. It aims at aiding countries affected by disasters and/or humanitarian emergencies, providing help during or after disasters occur.

The European Civil Protection supports the development of European policies focused at preventing and reducing disaster risks (e.g. floods and droughts) and their impacts on society by regularly producing overviews of natural and manmade disaster risks that are challenging the European territory. In this task, the Civil Protection is helped by specific working groups and by the DRMKC, which carry out multi-disciplinary research to monitor the evolution of disaster risk, identify its major drivers and assess the priority areas for policy development (ECHO, 2021) Those activities are achieved through the use of the Copernicus Emergency Service products, both for early warning and monitoring (EDO, EFAS) and for on demand mapping.

2.2.2. Joint Research Centre (JRC)

JRC is the science and knowledge service of the European Commission and its main scope is to carry out independent scientific research to support the development of European policies, promoting an evidenceinformed policy making process. Among its activities, JRC is the developer and coordinator of products and services such as EDO, CLMS and LISFLOOD model, which are used by JRC itself and also by other European institutions to monitor the current status of water resources and climate.

The LISFLOOD hydrological model is used by JRC to produce studies that support the policy making process both in the formulation and in evaluation phases. Examples of usage of LISFLOOD in formulation of policies are: the assessment study of the impacts of climate change, land use, and water usage on Europe's water resources (Bisselink et al, 2018), which was accompanying the document "Proposal for a Regulation of the European Parliament and of the Council: on minimum requirements for water reuse"; a study to assess the impacts of the policy "A Blueprint to safeguard Europe's waters" before it was released by the Directorate General Environment department (DG NEV) (JRC et al, 2012). An example on the usage of LISFLOOD for evaluation of policies is the study on the assessment of four policy measures related to water savings on European water resources (EC et al., 2020)

In order to inform policy makers at different levels, including the European one, and to provide them with necessary tools throughout the whole policy making process, JRC created several Knowledge and Competences

Centres to analyse and review the current state of play on specific matters, such as disaster risk management and EO. Among the knowledge centres, the most relevant for inland water related policies are the Disaster Risk Management Knowledge Centre (DRMKC) and Knowledge Centre on Earth Observation (KCEO). DRMKC employs data and products from the Emergency Service and the Land Monitoring Service (EDO, EFAS, European Soil Database & soil properties, Corine Land Cover) to produce risk analysis maps both for flood and drought risks. This knowledge centre works in close collaboration with the European Civil Protection to develop policies aimed at preventing and reducing disaster risks. KCEO primarily aims at promoting the usage of EO products by policy makers, by assessing and translating the needs of European policies into technical requirements for EO, but also showcasing how remote sensing data are or could be applied in support of existing policies.

2.2.3. European Environment Agency (EEA)

The EEA is an agency of the European Union which aims at providing reliable information to be used by policy makers to develop, implement and evaluate environmental policies. The description on how EEA implments policies using Copernicus services can be found here. The main clients of EEA are some of the European Union institutions, such as the European Commission, the European Parliament, the Council, Economic and Social Committee and the Committee of the Regions, but

also the national governments of the EU members and the cooperating countries.

Among its activities, the EEA coordinates the CLMS together with JRC and monitors the status of the European environment and the implementation of European environmental directives at national level, both by using information provided by the EU members and by checking new data sources, including Copernicus satellite observations and citizen science. The Agency employs the information collected to produce reports, briefings and to organise informal meetings to inform the European Commission and Parliament. These institutions employ the reports and briefings as tools to monitor the progresses of member states, the reaching of climate targets and to decide whether to intervene with additional policies.

Copernicus satellite-based datasets are used by EEA in different environment-related topics. For instance, the EEA monitors the evolution of drought events and water scarcity by using the data developed and provided by EDO. In the field of climate change, the EEA uses the Urban Atlas dataset to assess river, urban and coastal floods in the present and future conditions (Olesen, 2012), in order to show Europe's vulnerability to climate change and support the European Adaptation Strategy. Finally, to monitor the inland water, the EEA uses the Copernicus dataset of Riparian Zones, to estimate the potential of green infrastructure (EEA, et ala, 2017), such as wetlands restoration, as a measure of flood management, in support of multiple European policies (the Water

Framework Directive, EU Biodiversity Strategy, Habitats and Birds Directive). Moreover, to assess the morphology of large rivers (Bechter,2018), in support of the Water Framework Directive, the Agency employs the Water and Wetness, which shows the occurrence of water and wet surfaces from 2009 to 2018.

3. Use of RS for water-related policy and decision making at EU national level

3.1. Introduction to water management in EU member states in relation to Remote Sensing / Copernicus data and services

Previous deliverable reports of WaterForCE already indicated the value of remote sensing, and in particular Copernicus data for different aspects of water management. In particular, deliverable D1.6 indicated the values of Copernicus data for addressing achievement of the SDGs, many of which are water-related, as well as the relevance of Copernicus data for dealing with the climate change challenges (impact assessment, adaption, mitigation), via the provision of relevant data regarding the Essential Climatic Variables (ECVs). Furthermore, deliverable D5.1, presented the needs assessment for Copernicus data regarding modelling of water quantity and quality so that useful information can be provided for decision makers, and D5.2 presented the value of available Copernicus services for water systems modelling. A number of recommendations have been provided for improved uptake and use of Copernicus data in water modelling and decision making.

The information presented in these previous documents addressed the role of Copernicus data and services when dealing with global challenges

and the needs of water modellers. This section presents actual water management in EU member states and the potential role of remote sensing and Copernicus (RS/Copernicus) data for water policy and decision making in that context. As it will be shown, use of RS/Copernicus data is extremely limited in regular water management activities in EU member states, due to different reasons.

Water policy in all member states is based on the relevant EU Directives, most important of which are the Water Framework Directive (WFD) and the Flood Directive (FD). These have been translated into corresponding national legislation, and have led to development of River Basin Management (FRM) and Flood Risk Management (FRM) plans. Other relevant directives include the Drinking Water Directive, Urban Wastewater Treatment Directive, Bathing Water Directive and additional EU waterrelated policy documents. Implementation of these directives, in particular the development of RBM and FRM plans have involved extensive modelling of the water systems, mostly with data from existing in-situ monitoring networks. Some recent initiatives for demonstrating the usefulness of Copernicus data in monitoring and assessing progress with implementation of WFD (so called 'downstream services' from Copernicus point of view - see examples in Estonia and Finland). However, such examples come from research centres and actors actively engaged in Copernicus uptake, and expansion to regular water management activities is yet to be realised.

Reasons for slow uptake of RS / Copernicus data in water management are primarily in the characteristics of the sector. First, as water is critical resource for so many different socio-economic activities, there are many different water management aspects (many covering aspects beyond those of the EU Directives) : water resources assessment, planning development and protection (both surface water and groundwater), public water supply, waste water treatment and disposal, management of water-related disasters such as floods and droughts, agricultural water use (irrigation and drainage), water for energy production, inland navigation, water-related ecosystem services, tourism and recreation (including bathing waters), etc. This situation has resulted in distribution of water management across different organizations, agencies and actors, at different government level (national, regional, municipal), with complex inter-relationships, which sometimes hamper collaboration and use of integrated approaches. Because of this necessarily distributed management model, introduction of RS / Copernicus data in the diverse water management activities is quite challenging.

Perhaps even more importantly, many water management activities are critical for public and ecosystem health, and, consequently, are carried out within a strict regulatory framework, in particular for water monitoring. These conditions have contributed to the fact that the water management sector is rather 'traditional' and 'conservative', leaving exploration of advanced technologies and data (such as RS/Copernicus) to research

organization, and adopting them only after clearly demonstrated proofs of their usefulness. Often, such technologies and data are used only if they are mandated by legislation. A clear example for this is drinking water quality, where sampling, testing and reporting is strictly regulated in all EU member states by responsible agencies.

Finally, many water management activities are necessarily local, and reliance on locally available data from in-situ monitoring networks is established and reliable, and RS/Copernicus data and services are not considered because they are yet to be developed with comparative quality (accuracy, required spatial and temporal resolution, etc.).

In this situation the primary responsibility for promotion the use of RS/Copernicus in water management comes from different actors and agencies, not the water management organizations themselves. Primary 'promoters' are the EU organizations involved in space exploration and research, such as the European Space Agency (ESA) and the Copernicus programme itself with its services. EU Research Programmes, such as the current Horizon Europe, are also having an important role, as use of RS/Copernicus data is promoted in a number of research calls where water plays an important role. In many EU member states there are also national active space agencies, mostly associated with research and innovation activities that also play an important role in promoting the use of RS / Copernicus in different sectors, including water management. Finally, a very important role of promotion and introduction of these data

and technologies is taken up by the business sector involved in remote sensing and geo-spatial information services development and provision. Many companies in different countries are actively developing and demonstrating the usefulness of RS / Copernicus data in water-related applications.

Following this introduction, we will present in sub-section 3.2 a brief overview of water management characteristic of each EU member state, and relation to usage of RS Copernicus data and services, including research and innovation activities in this area. It will be demonstrated that such data are practically not used in regular water management, but that in many countries research and innovation actions are becoming more and more relevant and 'closer' to regular water management activities. After this presentation, in sub-section 3.3 we will provide some reflections and conclusions regarding opportunities and challenges for further introduction of RS / Remote Sensing in regular water management activities in EU member states.

3.2. Water policy and management and the use of RS / Copernicus data and services in EU member states

<u>Austria</u>

Water management characteristics	RS / Copernicus data in water	
and data	management	
Responsible organizations:	R&D promoted and supported nationally via:	
National:		
Ministry of Agriculture, Forestry, Regions	Austria-in-space: Part of open4innovation	
and Water Management:	portal for publicly funded research in	
Implementation of water policy	Austria.	
(including WFD, FD)		
• Assessment and monitoring of	The portal lists a number of successful past	
water resources (surface and	and recent RS projects implemented in the	
groundwater)	filed of water management, some of which	
Enforcing regulation	have continued to provide services after the	
• Overall coordination, national and	research projects finished.	
international (via international	Examples:	
river commissions for Elbe,	Earth observations for water	
Danube, Rhine)	resources management - Provision	
• Water data portals via <u>Water</u>	of agricultural and meteo data for	
Information System Austria	smart farming	
(WISA), all using in-situ	<u>ACube4Floods</u> - Flood Event	
monitoring data, without any	Monitoring and Documentation	
reference to RS/Copernicus data	enabled by the Austrian Sentinel	
Ministry of Health:	Data Cube	
• Drinking water quality standards		

Ministry of Climate Action, Environment. • EOP-Danube - Earth Observatio			
Energy, Mobility, Innovation and	Platform for the Greater Danube		
Technology	Region		
Environment Agency of Austria:	Ell-funded research contributions example:		
evenert lehereteries englyees			
	• <u>Lake Neusledi. Montoring water</u>		
inspection bodies and advice on	quality with satellite imagery		
environmental issues, including			
water-related	Although Copernicus user uptake does not		
Regional: Provinces:	report any example from Austria, there are		
Flood management, including	a number of research projects and RS		
warning	companies in Austria that actively pursue		
• Standards for waste water	development of RS / Copernicus-based		
treatment	applications, including in the water domain.		
Water supply and wastewater	An important example area is snow		
management	monitoring (for hydropower and for tourism).		
Local: Municipalities:			
Implementation of water supply	Austria is also a host of International		
and wastewater collection ad	organizations active in the area, such as		
treatment	the United Nations Office for Outer Space		
Drinking water quality monitoring	Affairs (UNOSA), which hosts the		
Compliance with national and	space4water portal.		
regional regulations and laws			
Conclusion: Active R&D in RS / Copernicus data for water, but with very limited			
implementations in regular water manage	implementations in regular water management		

<u>Belgium</u>

Water management characteristics	RS / Copernicus data in water		
and data	management		
Responsible organizations:	R&D promoted and supported at		
National:	provincial level		
Agency for Health, Food Chain Safety and			
the Environment:	Example projects and applications:		
Coordination of regional / provincial			
agencies	<u>Watermonitor</u> : Monitoring water		
Managing coastal waters	quality of water bodies		
Regional: Brussels environment;	• WALOUS - Land use and land		
Environment of Wallonia, Flemish	cover mapping in support of flood		
Environment Agency	risk management in Wallonia		
 Assessment and monitoring of 			
water resources (surface and	Again, Copernicus user uptake does not		
groundwater)	report any example from Belgium, but a		
Water-related legislation	number of research projects and RS		
Implementation of EU Directives	companies in Belgium are developing RS		
(WFD, FD)	/ Copernicus-based applications, either		
• water services, such as water	directly relevant for water management,		
supply, sewerage and waste water	or in areas related to it (agricultural		
treatment (via regionally owned	applications, land use land cover		
companies, or in collaboration with	monitoring, etc.).		
local companies)			
Coordination with neighbouring	An interesting project has been initiated		
countries on shared river basins	recently in Flanders, named Internet of		
	Water - Flanders, for improved monitoring		

٠	Water data portals via respective	of water quality and quantity, currently		
	sites; <u>no reference to RS /</u>	completely focused on integration of		
	Copernicus in regular monitoring /	multiple in-situ sensors in one network for		
	management activities	obtaining real-time data to be used in		
Local:	Municipalities:	models and applications. Such projects		
•	Management of small non-	could benefit from further integration of		
	navigable water bodies	RS / Copernicus data, which hopefully		
•	Drinking water quality monitoring	would be planned in future.		
•	Compliance with national and			
	regional regulations and laws			
	· · · · · · · · · · · · · · · · · · ·			

Conclusion: Active R&D in RS / Copernicus data for water, no implementations in regular water management

<u>Bulgaria</u>

Water management characteristics	RS / Copernicus data in water		
and data	management		
Responsible organizations:	R&D promoted at nationally by the $\underline{\text{Risk}}$		
National:	<u>Space Transfer - Technology Transfer</u>		
Ministry of Environment and Water:	Office - part of Bulgarian Academy of		
 Implementation of water policy 	Sciences.		
(including WFD, FD)			
• Assessment and monitoring of	Example projects have been reported in		
water resources (surface and	Aleksieva-Petrova et al. (2022):		
groundwater)	• EMOWAF (EO Monitoring for		
Water permits	better Water Management and		
Enforcing regulation	Flood Prevention in Bulgaria),		

National Institute of Meteorology and Hydrology:

 Water monitoring and reporting: <u>Some data available via their web</u> <u>portal (in Bulgarian), but only from</u> <u>in-situ monitoring networks; there is</u> <u>no mentioning of RS / Copernicus</u> <u>data sources.</u> More data available only on demand.

Executive Environmental Agency:

 Environmental monitoring and reporting (some relations to water issues). Data mostly available on demand. Copernicus Programme is introduced and their web site and some national projects regarding LULC mapping are reported.

<u>Regional:</u> No separate responsibilities, but the Ministry of Water and Environment organises water management in four separate Basin Directorates. <u>Local:</u> Municipalities:

 Local policy and management of drinking water supply, sewerage and waste water treatment funded by the Government of Bulgaria through ESA.

 <u>Smart Crop Production</u>, with components related to use of RS data

Other example projects identified:

- Danube River Basin Directorate:satellite information for riskassessment, contributing todevelopment of Flood RiskManagement Plan
- Integrated Approach to Pluvial
 Flood Management

There are no water-related projects reported in Bulgaria in <u>Copernicus user</u> <u>uptake</u>, but there are several that promote Copernicus activities and collaborations.

Conclusion: Initiated R&D in RS/Copernicus data for water; no implementation in regular water management

<u>Croatia</u>

Water management characteristics and data	RS / Copernicus data in
	water management
Responsible organizations:	R&D activities in Croatia with
National: <u>Hrvatske vode</u> (Croatian waters) - main	RS / Copernicus data and
national water management agency	services are just beginning.
	Main promoter is the Ministry
 Implementation of water policy, including 	of science and education
WFD, FD and other EU water-related	through its pillar on Digitization,
directives	industry and space (in
Water resources assessments	Croatian).
• Planning, design and implementation of water	Another relevant organization is
resources projects and infrastructure	Adriatic Aerospace Association
 Drought and flood risk management 	<u>(A3)</u> .
 Irrigation and agricultural water use 	
management.	There are no identified water-
Regulation and management of commercial	related projects.
use of water	Opportunities are in water
Data portals available with limited availability. All data	quality observation projects and
are from in-situ networks, no RS / Copernicus data	applications (including coastal
mentioned. Most data available only on demand	waters), given the country's
	high reliance on tourism.
Croatian Meteorological and Hydrological Service:	
Further hydrological data available in portals from in-	
situ networks, but, again, mostly on demand (no RS	
/ Copernicus data)	

Regional: Regions	There are no projects reported
Protection of drinking water sources in	in Croatia in Copernicus user
collaboration with 'Hrvatske vode' and	<u>uptake</u>
municipalities	
Local: Municipalities:	
• Local management of drinking water supply,	
sewerage and waste water treatment	
Implementation of local measures for RBM	
and FRM	
Conclusion: R&D in RS/Copernicus data needs to b	e initiated; no implementation in
regular water management	

<u>Cyprus</u>

Water management characteristics and data	RS / Copernicus data in	
	water management	
Responsible organizations:	R&D promoted by	
National: Water Development Department of the	organizations such as The	
Ministry of Agriculture, Natural Resources and the	Cyprus Institute, Cyprus Space	
Environment	Exploring Organization, Cyprus	
	Remote Sensing Society.	
 Planning, construction and operation of 		
waterworks such as dams, reservoirs, water	Example water-related R&D	
conveyance projects, irrigation and water	projects identified:	
supply networks and water treatment plants.		
 Desalination plants and contracts. 	• The Challenge of	
Managing and supplying water from	Irrigation Management	
Government Waterworks for various uses.		

• Water monitoring, assessment and reporting	<u>in Cyprus using</u>
(groundwater and surface water) via web site	<u>Copernicus</u>
 Implementation of European water-related 	• Cyprus Audit Office:
directives	EO to support beach
 Drought and flood risk management 	inspections, improve
• Development of awareness for rational water	coastal management,
use and water saving	and prevent
Main focus on desalination, water saving, rational	environmental damage
water usage and reuse of treated wastewater in	
agriculture: Water data for management from in-situ	Given that the main issue is
networks (no RS / Copernicus)	water scarcity, agricultural
	water use could be the focus
Regional: Districts	of future projects and
Flood protection	applications with RS /
Regional storm water management	Copernicus data and services
Local: Municipalities:	No examples from Cyprus
• Local management of drinking water supply,	reported in <u>Copernicus user</u>
sewerage and waste water treatment	uptake.
Conclusion: Initial R&D in RS/Copernicus data needs	to be extended in water domain;
no implementation in regular water management	

Czech Republic

Water management characteristics and data	RS / Copernicus data		
	in water management		
Responsible organizations:	R&D promoted at nationally		
National: Ministry of the Environment	by the <u>Geoinformatics</u>		

•	conservation	of	quantity	and	quality	of	surface
	water and gr	oun	dwater,				

- flood prevention,
- water planning at the national and international levels
- international co-operation in water protection,
- economic, financial and administrative instruments in water protection,
- drafting of legislation and standards in water protection

Czech Hydrometeorological Institute:

- Water monitoring and reporting
- Flood forecasting
- <u>Rich data portals including real-time data, but all</u> from in-situ monitoring stations, no reference to RS/Copernicus data

Water management information portal VODA (in Czech language) - a multi-agency portal for water data and information, presenting geospatial and other data from multiple sources, regarding water quantity and quality (surface and groundwater); again, using only in-situ data (no RS / Copernicus)

Regional: Regions

- Implementation of measures from RBM and FRM plans
- Emergency situations management

department of CENIA- theCzechEnvironmentalInformationAgency.

Many Copernicus-related activities but no examples of truly water-related R&D projects. However, CENIA runs а separate environmental information portal MICKA, where some Copernicus data (land monitoring, soil moisture) are included. Such information could be merged with existing water future portals in (e.g. VODA).

There are also no waterrelated projects reported in the Czech Republic in <u>Copernicus user uptake</u>, but there are several that promote Copernicus activities and collaborations.

Local: Municipalities:

 Local management of drinking water supply, sewerage and waste water treatment

Conclusion: Active R&D in RS/Copernicus data that needs to be extended in water; no implementation in regular water management

<u>Denmark</u>

Water management characteristics and data	RS / Copernicus data
	in water
	management
Responsible organizations:	Use of RS/Copernicus
National: Environmental Protection Agency, of the Ministry	data carried out nationally
of Environment	by the Danish Agency for
Policy formulation	Data Supply and
• Monitoring and assessment of groundwater and	Infrastructure (SDFE).
surface water resources,	They report a number of
 Permitting, enforcing regulations, 	uses of RS data, but not
• Preparation and implementation of RBM and FRM	in the domain of water
plans, according to EU directives	directly. Further R&D is
 International cooperation, 	coordinated and funded
Overseeing water supply and waste water	by the Danish Ministry for
management.	Higher Education and
	Science, with many
Danish Meteorological Institute (DMI) (for Denmark and	active research
Greenland):	organizations.
• Monitoring and reporting water-related meteo data	
(precipitation, temperature etc.)	

• Water levels monitoring and reporting

• Sea ice data

- Radar data
- Forecasting data
- Climate data

Data portals include a number of free data sources, some are only available on demand. Regular data are provided from in situ observation network, but DMI is very active in merging RS data in its research, analysis and forecasts. They are active consumer of satellite data and contributor to the Danish Space Strategy, mainly in the domains of climate and Arctic research. Their web site cites a number of initiatives and research actions with Copernicus data.

Geological Survey of Denmark and Greenland (GEUS)

- Monitoring and mapping of water resources
- Monitoring and analysis of water quality
- Modelling of water quantity and quality
- Monitoring of groundwater

As practically all water for public water supply comes from groundwater the activities of GEUS on groundwater monitoring are of special importance. They maintain the data centre for the National Groundwater Monitoring Network (GRUMO), which is part of the National Monitoring Program for Aquatic Environment and Nature (NOVANA). NOVANA includes other related monitoring programmes, such as the Agricultural Catchment Monitoring Program (LOOP). Their <u>GEUS Jupiter data</u>

А recent report coordinated by SDFE presents 50 Copernicus user stories in Denmark by different research with organizations, water-related several applications (e.g. waterlogged assessing agricultural fields, flood mapping, measuring water depth in shallow water bodies)

Additional examples identified is in the area of <u>Land subsidence</u> <u>observations for utilities</u> (land subsidence is an important concern in the whole country due to groundwater abstraction).

Two examples are listedfromDenmarkinCopernicususeruptake,oneofwhichistheSDFE'sdevelopmentbestpracticecatalogue

portal provide access to groundwater, drinking water data	for use of Copernicus in
and other related information (from existing in situ	the public sector in
observation networks). No RS/Copernicus data for regular	Denmark.
water management, but some research, particularly for	
Greenland and Arctic climate research. They also	
participate in the multi-agency Hydrological research	
laboratory (HOBE), where research is being carried out in	
experimental catchments where in-situ data are considered	
together with RS/Copernicus data (e.g. soil moisture)	
Local: Municipalities:	
Development and implementation of local action	
plans regarding water management, based on the	
RBM and FRM plans	
Operate own water supply and waste water	
treatment companies (other water service providers	
are private)	
	1

Conclusion: Very Active R&D in RS/Copernicus data that has already a number of water-related applications; implementation in regular water management could be next step.

<u>Estonia</u>

Water	managem	nent	character	istics	and	d RS / Copernicus data in
data						water management
Respons	ible organiza	ations:				Estonia is very active in R&D
National:	Ministry	of E	Invironment	the	Water	and use of RS/Copernicus data.
Departmo	ent					Lead agencies are the Estonian

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

- Overseeing preparation and implementation the RBM and FRM plans
- Enforcement of regulations,
- Economic analysis,
- Coordination of WFD implementation.

Estonian Environment Agency:

- Hydrological monitoring (surface and groundwater)
- Hydrological forecasting
- Maintenance of hydrological information system
- Data provided to <u>national weather service</u>
 <u>portal</u>
- Monitoring and reporting of water use via the <u>VEKA portal</u>, as part of the Estonian Nature Information System (EELIS)
- Administrating water-related databases, some of which provided via the <u>Portal of</u> <u>the Environment Agency</u>

The above mentioned portals provide data from in situ observation network, with no reference to RS/Copernicus data for regular water management

Further water-relevant data are provided by the Estonian Land Board, via its <u>Geoportal</u>, where <u>Copernicus data and other RS data are provided</u>, including those from the <u>National Satellite Data</u>

Space Office, Tartu Observatory at University of Tartu, which has water remote sensing group that focuses on monitoring lakes and water bodies with the aim of contributing to unified WFD implementation in Europe. The remote sensing website contains data and projects information from many collaborating research organizations.

Water-related applications have also been reported in the <u>Estonian Space Technologies</u> <u>Phonebook 2020</u> on following topics of water mapping from EO data, ocean monitoring and sea ice mapping with EO data.

Five examples are listed from Estonia in <u>Copernicus user</u> <u>uptake</u>, most relevant of which is the one on unified approach to WFD implementation in Europe, based on RS data, already mentioned above.

 Centre ESTHub.
 Such data are yet to be integrated

 in regular water management.

 Local:
 Municipalities:

 •
 Organization of public supply of water and sewerage,

 •
 Control / restrict industrial water use related to drinking water quality,

 •
 Use of local natural resources, including bodies of water.

 Conclusion: Active R&D in RS/Copernicus data that has already a number of water

related applications; implementation in regular water management could be next step.

<u>Finland</u>

Water management characteristics and data	RS / Copernicus data
	in water
	management
Responsible organizations:	Finland is advanced in
National: Ministry of the Environment	using RS/Copernicus
Overseeing preparation and implementation the	services and data
RBM and FRM plans	including in regular water
Enforcement of regulations	management by agencies
 Assessment of water bodies status 	such as:
International cooperation	Finish Environmental
Ministry of Agriculture and Forestry	Institute (SYKE)
Legislation relating to the water economy	Finish Meteorological
	<u>Institute</u>

• Legislation on water supply and services, dam	RS/Copernicus data		
safety and basic drainage	already included in their		
Transboundary watercourses agreements	data portals and used in		
Finish Environmental Institute (SYKE)	water management		
 Monitoring of waters; Portals: 	activities.		
WaterMap (in Finish) ecological and chemical	Example activities and		
status of waters	projects:		
Tarkka: Satellite images services, including	• EO for Water		
Copernicus	Framework		
Water data discoverable via their metadata portal	Directive and		
Finish Meteorological Institute	Marine Strategy		
• Monitoring of weather, including water relevant data	Framework		
Inter-agency water portal: VESI (in Finish)	Directive		
• Water data from different agencies presented in	monitoring		
one portal.	(SYKE)		
• Map services that combine in-situ and RS data	• <u>Water quality</u>		
including RS/Copernicus, time series data of water	management in		
variables from in situ observation networks.	Finland		
Summary information provision	<u>Copernicus</u>		
Centre for Economic Development, Transport and the	Assisted Lake		
Environment (ELY Centres)	Water Quality		
Support in preparing RBMPs and FRMPs	Emergency		
Supervision of adherence to water permits	Monitoring		
Flood protection and prevention	Service		
Dam safety			
Support municipalities in development of water	Finish agencies are also		
services and sewerage and supervision of water	active in multinational		
supply	consortia focused on		
Regional Councils:	RS/Copernicus services		

٠	Elaborate and implement local development plans	and da	ata, some of which
•	Organizing regional land use planning and leading	are rel	evant for water, for
	flood working groups	examp	le:
<u>Munici</u>	palities:	•	ARCOS (Arctic
•	Environmental permits and protection		Observatory for
•	Water services and sewerage		Copernicus SEA)
•	Monitoring quality of drinking and bathing water	•	BalticSatApps –
•	Taking part in river basin management planning		project and
	and flood working groups.		marketplace for
			speeding up
			Copernicus-based
			innovation in
			Baltic Sea Region
Conclu	ision: Active R&D in RS/Copernicus data that has a	lready a	a number of water-
related	l applications; further implementation in regular wa	ater ma	nagement can be
expand	ded		

France

Water management characteristics and	RS / Copernicus data in
data	water management
Responsible organizations:	There are two national
National:	organizations involved in RS
Ministry for the Ecological and Inclusive	activities:
Transition (Ministère de la Transition	Centre National d'Etudes
Ecologique et Solidaire)	Spatiales - CNES (cnes.fr):

 <u>Comite National de l'eau</u> (Comité National de l'Eau)

The central government is responsible for:

- the development and implementation of water legislation,
- developing national water policy and addressing common issues across river basins,
- coordination of cooperation on water management with neighbouring countries and at international level

Regional

• Regional councils

Regional councils are represented on the river basin committees (*comités de bassin*), which set river basin objectives, adopt the RBMPs and FRMPs and provide coordination among elected bodies and stakeholders.

- Regional authorities (Directions Régionales de l'Environnement, de l'Aménagement et du Logement - DREAL)
- Prefect Coordinators (Préfets
 Coordonnateurs de bassin)

The prefect coordinators of the river basins give final approval to the RBMPs adopted by the river basin committees. They coordinate water

- Promotion of Copernicus
 Data and Services
- Education / Training
- Event on Copernicus

Development of Services NASA and CNES (French Space Agency) are collaborating to make the first global survey of Earth's surface fresh water and study fine-scale ocean currents with a mission called new SWOT, or Surface Water and Ocean Topography. SWOT will collect data on the height of Earth's salt and fresh water including oceans, lakes, and rivers - enabling researchers to track the location of water over time, which will help measure the effects of climate change.

SWOT is expected to launch from Vandenberg Space Force Base in central California in November 2022.

SWOT is a collaboration between NASA and the French space agency Centre National d'Etudes Spatial (CNES), with

management in their river basins, including enforcement of water regulations.

The Regional directorates for the environment, planning and housing (DREAL) support the authorities on water management, including monitoring of water bodies.

• <u>Water Agencies</u> (Agences de l'eau) The water agencies provide technical and scientific support at river-basin level, including for the preparation of RBMPs. Moreover, they provide financial resources for implementing the Programmes of Measures.

The European Environmental Agency reports that here is no national programme for monitoring lake water quality in France.

 River Basin Committees (Comités de Bassin)

A national hydrological data for 4000 basins of France is hosted in the INRAE database (https://webgr.inrae.fr/activites/base-de-donnees/). Local

• Municipalities (Municipalités)

Municipalities are responsible for:

- local implementation of water policies and plans, including local water management projects,
- managing drinking water supply, municipal sewerage and waste water treatment (either

contributions from the Canadian Space Agency (CSA) and United Kingdom Space Agency (UK Space Agency).

Centre National de la Recherche Scientifique - CNRS (www.cnrs.fr/), the main scientific organization in the country. CNRS main interests in FCUP activities lay in:

- research activities based on the use of Copernicus data and services
- developement of research tools using Copenricus data and services
- training and dissemination activities to students/private sector

In the <u>Copernicus user uptake</u>, a large project is reported, using RS Copernicus data for inland water quality monitoring for France and across the globe. This data is hosted in THIEA (<u>https://www.theia-land.fr/</u>), part of <u>Data Terra</u> data center.

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

directly via municipally owned companies or	RS data is used by EPAMA (the
delegated to private operators),	Public Entity for the Management
local water protection and flood prevention	of the River Meuse and its
measures.	Tributaries) in the Meuse basin
Municipalities can join together in inter-municipal	for a better management of flood
unions (<i>Syndicat intercommunaux des eaux</i>) to	risks.
manage common water services or undertake other	
water management activities.	
Municipalities and inter-municipal unions are	
represented on the river basin committees.	
Municipalities participate in Local Water	
Commissions (Commission locale de l'eau) together	
with water users and stakeholders. These	
Commissions develop local water plans, (Schéma	
d'Aménagement et de Gestion des Eaux).	
Municipalities and inter-municipality groups	
participate in river contracts that implement	
measures for the RBMPs, FRMPs and lower-level	
plans.	
Local Water Commissions	
Conclusion: very active in RS /Copernicus in rese	earch and academia and industry

sector, but more in the coastal/transitional/marine areas than inland waters. implementation in regular water management could be next step.

Germany

Water	r management	RS / Copernicus data in water		
chara	aracteristics and data management			
Respor	nsible organizations:	A number of German agencies are active in		
Nationa	al: Federal/state working group	RS/Copernicus data and services:		
<u>on wat</u>	er <u>(LAWA)</u>			
Collabo	prative body on water issues,	German Aerospace Center		
develo	ping harmonized water policies	German Environment Agency (UBA)		
regardi	ng:	German Weather Service (DWD)		
٠	water law	Helmholtz Centre Potsdam - German		
٠	hydrology	Research Centre for Geosciences		
٠	Water and marine protection	• Federal Office of Civil Protection and		
٠	ecology	Disaster Assistance		
٠	flood and coastal protection			
٠	groundwater	R&D activities in the field of water exist, in		
•	water supply	regular water management are being		
•	water supply and waste water	initiated. Examples (where water data play a		
•	water pollution	role) include:		
٠	technical coordination with EU	• Agrometeorological Modelling Based on		
<u>Germa</u>	n Environment Agency (UBA):	Copernicus Regional Reanalysis Data		
٠	Environmental monitoring	Downstream Service/Application		
	(including water)	Development for Monitoring of		
٠	Implementing environmental law	Environmental Indicators (Europe)		
٠	Research and international	Monitoring sea pollution on German		
	cooperation	coasts using satellite information		
Water	data available via <u>portal on</u>	• Water quality management - lakes and		
environmental data		water bodies		

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

Data available from in-situ monitoring networks; use of some RS data mentioned in some environmental reports

German Weather Service (DWD)

 Monitoring of water related weather data

<u>WaWIS</u> portal - Water Management Weather Information System, only for registered users

<u>DWD services</u>, also provides some water management relevant data and a limited number of RS data

German Federal Institute of hydrology: they provide some water level and water quality data. They also host the Global Data Runoff Center (GRDC) with global in situ river discharge data.

<u>Regional:</u> States (Länder Ministries, Länder Environmental Agencies):

- coordination of water management at lower levels
- preparing the RBMP and the FRMP

Like in other countries there are also applications in other domains relevant for water management (e.g. land use change monitoring, coastal monitoring etc.)

There are a number of projects from the related Copernicus Marine Environment Monitoring Service in Germany, such as:

- SOS Satellite-based Operational
 Planning in Lake Surveying; Federal
 Maritime and Hydrographic Agency (BSH)
 DEMARINE-2
- EisKlass31 Improvement of sea ice situation information for shipping in polar waters by combining sea ice classification with optical data from the Sentinel-3 and SAR data from the Sentinel-1 satellite series
- EmissionSEA Emission assessment, reduction and avoidance of ships by evaluating AIS signals;
- EnSAG Phase II: Coastal and inland waters;
- GeoWAM New geodata to improve water management in tidal coastal areas
 KelpMap 2.0 - Development of an atmosphere correction for scientific use of

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

- licencing polluting industry
- reporting and measurement stations

Regional - Counties:

- water resource planning
- household waste collection and disposal
- permitting
- monitoring of rivers

Local: Municipalities:

- drinking water supply.
- sewerage and waste water treatment
- monitoring of (smaller) water bodies and discharges

Other institutions:

BadenWürttemberg State Institute for the Environment monitors the quality of water in lakes through throughout their region using Sentinel 2 and 3 data. EnMAP and Sentinel-2 data in turbid coastal waters

- Consistent atmosphere correction and derivation of geophysical parameters from EnMAP and Sentinel-3 data for inland and coastal waters
- LAKESAT Synergetic use of spatially high- and medium-resolution satellite data for the operationalization of the analysis of inland waters
- MERAMO Support of the authorities involved in the implementation of the EU Marine Strategy Framework Directive using an assimilative ecosystem model
- Sentinels4Marine Plastic Waste -Pollution of aquatic ecosystems with plastic waste: Global and local monitoring using satellite-supported methods
- ShipTac Integrative use of X- and Cband SAR data for tactical ship route planning in arctic waters
- TanDEM-Ice Glacier monitoring in high Asia using TanDEM-X InSAR and other earth observation sensors

Conclusion: Very active R&D in RS/Copernicus, as well as in the industry sector. Some data is already used in regular water management at national level.

Greece

Water management characteristics and data	RS / Copernicus
	data in water
	management
Responsible organizations:	• From the
National:	Copernicus user
<u>Ministry of Environment and Energy</u> (Υπουργείο	uptake, NOA
Περιβάλλοντος και Ενεργειας)	(National
• <u>Special Secretariat for Water</u> (Ειδική Γραμματεία	Observatory of
Υδάτων)	Athens), through its
The Special Secretariat for Water (SSW) under the Ministry	BEYOND Centre of
of Environment and Energy are responsible for:	EO Research and
 coordinating water management issues, 	Satellite Remote
 implementing the WFD, 	Sensing and
 monitoring the quality and quantity of water, 	PRAXI
• overseeing and regulating waste water and reuse	Network/FORTH
and flood management,	are leading efforts
engaging the public,	in Greece
 approving all regional RBMPs and FRMPs. 	in direct
The National Council for Water (NCW) is responsible for:	
• developing the national strategy on the management	Grasse and the
and protection of Greek waters	
• approving the national RBMP and FRMP prepared	Baikans;
by the SSW	
<u>Regional</u>	stakenolders -
 Regional Water Departments (Περιφερειακές 	researchers, public
Διευθύνσεις Υδάτων)	

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

• Regional environmental departments They are responsible for:

 licensing discharges of industrial waste water and municipal waste water from treatment plants.

The Regional Water Departments are responsible for:

- overseeing or preparing the preparation the RBMPs and the FRMPs in their Region. The Regional Water Departments can transfer that competence to the Special Secretariat for Water, which was the case in the previous cycle of implementation for all but two Regions,
- engaging the public in the preparation of the RBMP and FRMP.

<u>Local: Municipalities (Δήμοι)</u>

- participating in public consultations for the preparation of the RBMPs and FRMPs,
- protecting and managing water resources from extensive fisheries and pollution,
- constructing, maintaining and managing local water supply, irrigation, and sewage systems.

The Hydrologic Observatory of Athens provides data on hydrology (water depth, water level and water quality), in the region of Attica.

<u>A national initiative is HIMIOFOTS</u>, Hellenic Integrated Marine Inland Water Observing Forecasting and Offshore Technology System. It is coordinated by Hellenic Centre for Marine Research, with the participation of 7 universities of Greece. <u>It contains a web platform for inland waters</u> and a network of water quality monitoring stations. and private sector, general public;

- mapping needs and organizing training seminar for various applications (land use, forestry, wild
 - fires, agriculture, geohazards)
 - Applications for water managements comprise: impacts of climate change,
 - floods and soil moisture.

BEYOND Centre of EO Research and Satellite Remote Sensing, part of NOA, has hub а dedicated to floods management at basin monitoring, scale, mapping. Their projects also address water quality and climate change effects, but mostly in the marine

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

Geoadata.gov.gr provides open geospatial data and services	domain. Several other			
for Greece on: rivers, drainage basins, groundwater,	research institutions and			
transitional and coastal waters, foreshore.	public companies			
	(e.g. <u>Planetek</u>) are			
	involved in projects that			
	use RS data for water			
	quality, coastal			
	management and water			
	management for			
	agricultural activities.			
Conclusion: Active in RS /Copernicus in research and academia and industry sector;				

implementation in regular water management could be next step.

<u>Hungary</u>

Water management characteristics and data	RS / Copernicus
	data in water
	management
Responsible organizations:	There are no examples
National:	from Hungary in the
The General Directorate of Water Management (OVF)	Copernicus user
	uptake.
(http://www.ovf.hu/en/) is a central government body under	At national level,
the direction and supervision of the Ministry of Interior. It	Hungary is very active
supervises, coordinates and controls the activities of the water	in the R&D sector in
directorates.	RS. Two universities
Regional:	are listed as best in
	the country for RS -
Regional Water Directorates	Eotvos Lorand
Counties (<i>megyék</i>)	University and

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

Regional authorities are responsible for:

- The implementation of measures as specified in a national level (especially concerning floods),
- The monitoring and assessment of the status of the waters, including pressure and impacts analysis,
- Participation in the preparation of the RBMP and FRMP and the development of the relevant measures,
- Support for the engagement of the public,
- Enforcement of regulations at regional level.

Local authorities:

- Drinking water supply and infrastructure as well as sewerage for and treatment of municipal waste water (these services are directly managed by publicly owned companies under contract to the municipalities),
- Preventing flood damage.

The <u>Hungarian Hydrological Forecasting Service</u> operates within the General Directorate of Water Management (OVF), providing data on hydrology (e.g. river discharge and water level), hydrological forecasting (e.g. flood alert), snow and river ice, meteorological data.

The National Hydrographic Monitoring Network (<u>http://www.ovf.hu/en/</u>) contains data on surface water and groundwater, as well as precipitations, snow cover and soil moisture.

Hydrogeological data is stored by the Department of Hydrogeology of Hungarian Mining and Geological Service (<u>https://www.mbfsz.gov.hu/en/hydrogeological-data-store</u>).

Budapest University of Technology and Economics. Hungary also has an Institute of Geodesy, Cartography and Remote Sensing. Most of the applications are thematic land mapping (Remetey-Fülöpp, 2013). One Hungarian company, Debrecen Innova, is part of the NEREUS (Network of European Regions Using Space Technologies) consortium. There is also Hungarian а Association for Geo-Information. with members form academia. R&D. private and public sector. In water management, their projects address water quality in large lakes, impacts of climate change, flood management (especially along the Danube River).

The	National	Meteorological	Service	of	Hungary	monitorin	g	water
(<u>https:/</u>	/www.met.hu	<u>ı/en/idojaras/</u>) prov	vides data a	and for	ecasts for	facilities.		
three	large lakes:	Balaton, Tisza, Y	Velence, on	storm	warnings			
and w	ave height.							
The	Bala	aton Lir	nnological		Institute			
(https:/	/www.blki.hu	<u>/en/node/14854</u>) p	erforms res	earch ir	n the area			
of Bal	aton, the la	rgest lake of Cer	ntral Europe	e, which	n includes			
water	quality and I	nydrology.						
Concle	usion: activ	re in RS /Cope	ernicus in	R&D	implement	tation in	regular	water
manag	gement coul	ld be next step.						

Ireland

Water management characteristics and	RS / Copernicus data in
data	water management
Responsible organizations:	There are several examples in
<u>Central:</u>	Copernicus user uptake,
National government:	involving Ireland. The R&D in RS
 environmental legislation including 	in Ireland addresses: land use
freshwater and marine legislation.	changes and GHG emissions,
The Department of Housing, Planning and Local	agriculture and forestry.
Government:	Maynooth University launched
drafting the overall water policy, including	the Copernicus Academy &
the River Basin Management and Flood	Relay in Ireland this year. Its
Risk Management Plans.	main objectives are to:
The office of Public Works:	 foster user uptake of
	Copernicus Open

- coordinates the implementation regarding the Flood Risk Management,
- works with Environmental Protection Agency (EPA) and local authorities.

Environmental Protection Agency

- prepares river basin management plan templates
- gathers information on programme measures and input from local authorities.
- provides reports on key indicators on health of waters.

<u>EPA runs several projects that report the use of</u> <u>RS Copernicus data</u> for the environmental assessment of lakes and coastal waters, especially on water quality.

<u>Irish Water</u>, accountable to the EPA and the <u>Commission for Energy Regulation</u>

manages water and wastewater services.
Regional

Regional assemblies

 coordinate the implementation of legislation at regional and local levels with the technical support of Environment Protection Agency (EPA) and the Local Authority Waters Programme

Local and national

The Local Authority Waters Programme

 brings together local authorities and state agencies to implement RBMPs, promoting Satellite data at a local, regional and national level

- engage with new and existing Copernicus users to build capacity and skills in Earth Observation
- share resources and help to build strategic networks across public and private sectors in Ireland
- support public and private sectors in Ireland to harness funding opportunities for building real-world EO applications and services
- showcase a range of real-world Use Cases from across Europe and Internationally with particular reference to agriculture, maritime and climate sectors
- host a series of webinar & seminars aimed at deepening strategic

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

the implementation of mitigation measures,	partnerships between				
providing scientific assessments of water	interested stakeholders				
bodies and encouraging citizen engagement	and developing EO				
at local level.	based services that				
In Ireland the OPW (Office of Public Works)	address real-world				
provides, through <u>www.waterlevel.ie</u> , real time	challenges				
water level data recorded at hydrometric gauging	The academy has several				
stations at over 380 river, lake and tidal locations	projects addressing: water quality				
nationwide. The OPW also coordinates a national	in inland waters, soil moisture				
programme for flood studies	and management of coastal				
(https://www.gov.ie/en/collection/34529d-flood-	areas and their resources.				
studies-update-fsu-programme/), using mostly in-situ	The Copernicus Emergency				
measured data. Lan-cover data is used, as part of	Management Service was used				
the models.	by the Irish authorities to				
	manage the greatest floods in				
	their history, after several major				
	storms, in the winter of 2015-				
	<u>2016</u> .				
Conclusion: Active P&D in PS / Constructed data for water, some implementations in					

Conclusion: Active R&D in RS / Copernicus data for water, some implementations in regular water management.

<u>ltaly</u>

Water management characteristics and data	RS / Copernicus data	
	in water management	
Responsible organizations:	On the Copernicus user	
<u>Central:</u>	uptake website, there are	
• Ministry of Environment, Land and Sea	several examples from	

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

- <u>Italian Institute for Environmental Protection and</u>
 <u>Research (ISPRA)</u>
- Italian Regulatory Authority for Energy, Networks and Environment (ARERA) - supervises water services

The central government is responsible for:

- national water legislation, including acts to transpose and implement the Water Framework Directive (WFD), Floods Directive and other EU water legislation,
- coordination of the implementation of the WFD,
 Floods Directive and other EU water legislation,
- development of methods for setting water tariffs and overseeing tariffs in place.

<u>Regional</u>

Regional authorities and the autonomous provinces of Trento and Bolzano/Bozen:

- are represented on the board (*Conferenza istituzionale permanente*) of the river basin district (RBD) authorities of RBDs spanning more than one region,
- prepare regional Water Protection Plans (*Piani di* tutela delle acque) to support and implement RBMPs,
- undertake monitoring of groundwater and surface water,
- enforce water legislation,
- contribute to the RBMPs (prepared by the RBD authorities),

Italy, on the use of Copernicus data for geohazards, aquaculture, land use/land

cover, forestry, cultural heritage. Water applications refer to aquaculture, soil moisture and management of bathing waters. The national partner is ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale).

Public authorities use RSdataforriverbasinmanagementintheAlps,wherethehydrogeologicaldataisessentialformappingandmitigatingland-slides.

The R&D community in Italy is very active in many projects that use RS data for basin management, in inland waters, transitional and coastal waters for several applications, including water quality and quantity. They contribute

lead the preparation of FRMPs for Units of	towards improving
Management managed at regional level (often	algorithms in inland and
under the coordination of RBD authorities),	transitional waters for
 contribute to the preparation of FRMPs for 	retrieving parameters like
interregional Units of Management (UoMs),	climate variables -
 implement RBMP and FRMP measures at 	temperature, water level
regional level,	and water extent, ice cover,
• identify and oversee water service areas (Ambiti	water quality parameters -
<i>territoriali omogenei</i>), whose agencies in turn	chlorophyll-a, Total
oversee water service companies and approve	Suspended Matter,
their tariffs.	dissolved organic matter,
Local	etc. This data feeds and
Local authorities/Provinces	improves the results of
• Roles vary by region and are delegated by the	mathematical models.
regions.	Some examples listed in
Municipalities	the C3S include:
Ownership of water service companies that	A prototype service
manage drinking water supply, sewerage and	developed by the
waste water treatment (ownership structures vary	Euro-Mediterranean
across the country),	Center on Climate
 Management of local water issues, 	Change to provide
 Implementation of RBMP and FRMP measures at 	users <u>with decadal</u>
local level,	predictions of
• Participate in river contracts (contratti di fiume)	precipitation
for local, participatory management of water	aggregated over
bodies.	three river
Data on lake water, derived from RS Copernicus imagery	catchments for the
is hosted in <u>https://dahiti.dgfi.tum.de/en/</u> database,	following 10 years
developed by Deutsches Geodätisches Forschungsinstitut	

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

der Technischen Universität München. The data set	sment of	
contains: altimetry water level, Surface Area Time Series a climate-pr	oof river	
from Optical Imagery, Time Series of Volume Variations, water bala	ance in	
Bathymetry, Land-Water Masks, Time Series of River	<u>r basin</u> .	
Discharge.		
Conclusion: Active R&D in RS / Copernicus data for water, the implementations in		
regular water management could be the next step.		

<u>Latvia</u>

Water management characteristics and data	RS / Copernicus data	
	in water management	
Responsible organizations:	There are no examples	
National:	from Latvia in the	
Ministry of Environmental Protection and Regional	Copernicus user uptake.	
Development:	R&D promoted at nationally	
 enforcement of water regulations 	by the IES (Institute for	
 coordination of public participation 	Environmental Solutions) is	
• implementation of measures and coordination of	a leading research	
bodies involved in their implementation	institution in Latvia in the	
• support for the monitoring of surface water and	field of Earth Observation	
groundwater, pressure and impact analysis,	and a service provider to	
support for the preparation of the plans and	the European Space	
Programmes of Measures	Agency, IES Encouraging	
oversight of the Regional Environmental Boards	the use and uptake of	
(responsible for water use permits)	Conornique data and	
• implementation and supervision of drinking water	Copernicus uata anu	
and sanitation improvement projects	services through training,	
	development of new EO	

on

for

Latvian Environment, Geology and Meteorology Centre solutions for natural (LEGMC): resource management and monitoring and assessment of groundwater and environmental monitoring. surface water quality and quantity, economic University of Latvia develop analysis, pressure and impact analysis, Copernicus User Uptake preparation of the FRMPs, RBMPs and Activities such as: user Programmes of Measures and implementation of consultations measures, Copernicus, dissemination support for public participation, of latest information on support for River Basin management, Copernicus programme and support for the assessment of flood risks its products, linking the Latvian Institute of Aquatic Ecology: industry with research, monitoring of surface waters attracting student supporting the assessment of status of surface researchers to opportunities waters and pressure and impact analysis of Copernicus. Local: Municipalities: Copernicus EMS Rapid supervision and management of water use, Mapping Activated drinking water supply, sewerage and waste water Floods in Latvia in 2018 treatment (data are available on the local water protection EMS website) - monitors implementation of specific RBMP and FRMP measures the Impact of Flooding in Central and Eastern Latvia.

Conclusion: Active R&D in RS / Copernicus data for water, no implementations in regular water management.

<u>Lithuania</u>

datawater managementResponsible organizations:Example of projects identified:National:Klaipeda_University - TrackingMinistry of Environmentalgal blooms on the Curonianlegislation and regulation for water managementalgal blooms on the Curoniancoordination and administration of the River Basin Districtsleading to better water management, water quality assessment and cyanobacterial bloom tracking (funded by the Government of Lithuania through ESA)regulation of drinking water and implementation of the EU Drinking Water DirectiveThere are no examples from Lithuania in the Copernicus userenvironmental Protection Agency (EPA)There are no examples from Lithuania in the Copernicus userwater managementcadastre of rivers, lakes and ponds Flood risk managementfundementation of the Urban WastewaterImplementation of the Urban Wastewater	Water management characteristics and	RS / Copernicus data in
Responsible organizations: Example of projects identified: National: Klaipeda University - Tracking algal blooms on the Curonian lagoon - Satellite data are leading to better water management • legislation and regulation for water management algal blooms on the Curonian lagoon - Satellite data are leading to better water management, water quality assessment and cyanobacterial bloom tracking (funded by the Government of Lithuania through ESA) • regulation of drinking water and implementation of the EU Drinking Water Directive There are no examples from Lithuania in the Copernicus user uptake. • State monitoring of rivers, lakes and ponds Flood risk management • Cadastre of rivers, lakes and ponds Implementation of the Urban Wastewater	data	water management
 National: Ministry of Environment legislation and regulation for water management coordination and administration of the River Basin Districts development and approval of RBMPs and FRMPs and their measures regulation of drinking water and implementation of the EU Drinking Water Directive water permit Environmental Protection Agency (EPA) State monitoring of rivers, lakes and ponds Water management Cadastre of rivers, lakes and ponds Implementation of the Urban Wastewater 	Responsible organizations:	Example of projects identified:
 Ministry of Environment legislation and regulation for water management coordination and administration of the River Basin Districts development and approval of RBMPs and FRMPs and their measures regulation of drinking water and implementation of the EU Drinking Water Directive water permit Environmental Protection Agency (EPA) State monitoring of rivers, lakes and ponds Water management on the principle of river basin districts Flood risk management Cadastre of rivers, lakes and ponds Implementation of the Urban Wastewater Treatment Directive 	National:	Klaipeda University - Tracking
 coordination and administration of the River Basin Districts development and approval of RBMPs and FRMPs and their measures regulation of drinking water and implementation of the EU Drinking Water Directive water permit Environmental Protection Agency (EPA) State monitoring of rivers, lakes and ponds Water management on the principle of river basin districts Flood risk management Cadastre of rivers, lakes and ponds Implementation of the Urban Wastewater 	Ministry of Environment legislation and regulation for water management 	algal blooms on the Curonian lagoon - Satellite data are
 bloom tracking (funded by the Government of Lithuania through implementation of drinking water and implementation of the EU Drinking Water Directive water permit Environmental Protection Agency (EPA) State monitoring of rivers, lakes and ponds Water management on the principle of river basin districts Flood risk management Cadastre of rivers, lakes and ponds Implementation of the Urban Wastewater Tractment Direction 	 coordination and administration of the River Basin Districts development and approval of PBMPs and 	management, water quality assessment and cyanobacterial
Directive • water permit Environmental Protection Agency (EPA) • State monitoring of rivers, lakes and ponds • Water management on the principle of river basin districts • Flood risk management • Cadastre of rivers, lakes and ponds • Implementation of the Urban Wastewater	 development and approval of RBMPs and FRMPs and their measures regulation of drinking water and implementation of the EU Drinking Water 	bloom tracking (funded by the Government of Lithuania through ESA)
 State monitoring of rivers, lakes and ponds Water management on the principle of river basin districts Flood risk management Cadastre of rivers, lakes and ponds Implementation of the Urban Wastewater Treastment Direction 	Directive water permit Environmental Protection Agency (EPA)	There are no examples from Lithuania in the <u>Copernicus user</u>
 Wastewater management accounting data 	 State monitoring of rivers, lakes and ponds Water management on the principle of river basin districts Flood risk management Cadastre of rivers, lakes and ponds Implementation of the Urban Wastewater Treatment Directive Wastewater management accounting data 	ираке.

٠	formulates and implements national policy	
	in the field of hydrometeorology	
•	performs hydrometeorological observations	
	and participates in the state environmental	
	monitoring programme	
٠	provides information on hydrological regime	
	of surface water	
<u>Lithua</u>	nian Geological Survey (LGS)	
•	groundwater monitoring of economic entities	
<u>Regior</u>	nal:	
•	Ministry of Environment organises water	
	management in four River Basin Districts.	
•	Regional Environmental Protection	
	Departments (REPDs)	
Local:	Municipalities:	
•	water management at a local level,	
supply	of drinking water and monitoring of	
sewera	age systems	
Conclu	usion: Active R&D in RS / Copernicus data f	or water, no implementation
regula	r water management.	

Luxemburg

Water management characteristics and data	RS /
	Copernicus
	data in water
	management
Responsible organizations:	In Luxembourg
National: Ministry of Environment, Climate and Sustainable	RS/Copernicus
Development	R&D activities are
water policy	led by the
enforcement of water regulations	Luxembourg
coordination of the implementation of measures from RBMP	Space Agency.
and FRMP	They provide data
establishment of administrative entities for water	via their <u>LSA</u>
management	Data Center.
 coordination of protection of water resources 	
national drinking water supply policy, including pricing and	However, no clear
drinking water protection zones	water-related
Water management agency:	R&D activities /
• monitoring and assessment of groundwater and surface	applications with
waters	RS/Copernicus
 conducting pressure and impact analyses 	data and services
 preparation of RBMPs and FRMPs, 	have been
	identified,
Water data available via dedicated geoportal: all water data from	although
in-situ networks, some background RS data are provided.	companies and
	research
	organizations are

Further data regarding water management via the open data	present in the	
platform of Luxembourg Some RS data are available such as soil	domain, for	
moisture and LULC data.	example: <u>Water</u>	
	Earth Observation	
Some information is also provided with the Environmental portal	<u>(WEO);</u> <u>RSS-</u>	
and the portal of the Luxembourg Met Office.	<u>Hydro;</u>	
	Luxembourg	
Local: Municipalities:	Institute of	
 implementation of government policies at local level 	Science and	
 local water management and protection 	Technology.	
 implementation of drinking water supply, sewerage and 		
waste water treatment services		
 issuing of abstraction and discharge permits 		
Conclusion: Active R&D in RS/Copernicus data, but hardly any clear water-related		
applications; R&D capacity is present, needs to expand in water domain, and eventually		
in water management.		

<u>Malta</u>

Water management characteristics and data	RS /
	Copernicus
	data in water
	management
Responsible organizations:	One example in
National:	the <u>Copernicus</u>
Ministry for Energy and Water Management	user uptake refers
	to marine waters.

development of Water Policy and Energy and Water	University of Malta
Services	- Oil spill drift
Energy and Water Agency and the Environmental and Resources	monitoring in the
Authority:	Maltese waters -
<u>radiony</u> .	forecasting tool to
• formulation and implementation of the Government's	assist decision
national policies in the energy and water sectors (Energy	makers and
and Water Agency)	stakeholders in
	the event of an oil
 monitoring and assessment of status of groundwater 	spill around the
(Energy and Water Agency) and surface water	Malta Island.
(Environment and Resources Authority)	Malta Copernicus
• pressure and impact analysis, economic analysis	Marine Service
• preparation of the River Basin Management Plan (RBMP,	Platform - Web
which includes also flood risk management) and	Service Dietform
Programme of Measures	Service Plauoim
• implementation of measures and coordination of	for Maltese waters
implementation	- serve local users
enforcement of regulation (Environment and Resources	with online access
Authority)	to dedicated
Regulator for Energy and Water Services is responsible for	products and
regulating water services including:	services derived
regulating watch services including.	from the
• the regulation of the national utilities (e.g. Water Services	Copernicus Marine
Corporation) and service providers for water	data.
 implementation of grant schemes and licences 	The Environmental
Water Services Corporation	and Resources
	<u>Authority</u> has a
	project for
	monitoring sea

complete drinking and waste water cycle from production	grass Cope	ernicus da	ising ita.
and distribution of water, to the collection and treatment	No	projects	for
	inland	sw b	aters
Regional: No competencies identified at the local level concerning	were	identified	I.
water management			
Local: Municipalities: No competencies identified at the local level			
concerning water management			
Conclusion: : Active R&D in RS / Copernicus data for water, no	imple	mentation	ns in
regular water management.			

Netherlands

Water management characteristics and data	RS / Copernicus
	data in water
	management
Responsible organizations:	Water management
National: Government (multiple ministries) develop National water	in the Netherlands
plan, also in accordance with EU directives	is developed to a
	sophisticated level.
Ministry of Infrastructure and Water management	All involved
(Rijkswaterstaat)	agencies collect,
• management of the major waters, such as the sea and	maintain and share
main rivers.	data, but mostly
Flood warning and alerting for major floods	from in situ
Maintenance of dykes, dams, weirs, and storm surge	monitoring
barriers.	networks, which are

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

Coastal protection and 'room for the rivers' projects	dense and provide
	high quality data.
Water data portals:	Water managers
	mainly trust these
Rijkswaterstaat data register; Many water related data from in-	data and the value
situ networks, no reference to RS/Copernicus.	of RS/Copernicus
Data also available via the Rijskswaterstaat geoportal and	data is yet to be
Rijkswaterstaat Waterinfo portal;	confirmed. There is
	active research on
Netherlands Hydrology Instrumentarium (NHI) (provided by	future use of RS for
consortium of porganizations); rich source of data and models	water management,
for groundwater and surface water. Data on national and regional	with focus on
scale available via their data portal. All from in-situ data, some	variables such as
RS data mentioned with their potential.	evapotranspiration
	and soil moisture.
Informatiehuis Water (Information house Water), a collaborative	
body of Rijkswaterstaat the provinces and Water boards	The Netherlands
maintains data portals on: Water quality, Water safety (flood),	Space office is
Droughts portal. They have also developed the Aquo-standard	active in sharing
for interagency exchange of water data.	RS/Copernicus data
	via their <u>Satellite</u>
DINOloket - portal for subsurface data in the Netherlands (for	Data Portal, where
groundwater)	data from Sentinel /
	Copernicus and
Regional: District Water Boards: 21 regional water boards,	other sources are
organized on catchment level, joint in the Union of Dutch Water	shared (without
Boards for cooperation.	specific focus on
 responsible for regional waters, such as canals and 	water).
polder waterways.	
	L

 water quality in regional surface waters 	Other (past)
flood protections	examples
 provision of water for agriculture 	applications include:
waste water purification	• <u>Water Board De</u>
	<u>Stichtse</u>
Water Bords maintain own water data portals, for example from	Rijnlanden:
Delfland Water Board and from Rijnland Water Board	integrated water
	management
Regional: Provinces	using satellite
 translating national water policy into regional measures 	information
 management of groundwater quality 	• <u>VOF School</u>
bathing water quality	Jansen: "more
	crop per drop"
Provinces maintain own data portals with environmental	thanks to
(including water) information, for example Climate adaptation in	satellite
the Province of Noord Brabant, or joint (national) bathing water	information
data information portal.	• Improving
	<u>coastal</u>
Local: Municipalities:	ecosystem
 groundwater in urban areas 	benefits under
drinking water supply and urban drainage (wastewater	increasing
and rainwater)	pressure (the
	Wadden Sea)
Conclusion: Active R&D in RS/Copernicus data for water applic	cations; Expansion in
regular water management is actively being explored.	

Poland

Water management characteristics and data	RS /
	Copernicus
	' data in water
	management
Responsible organizations:	Examples in the
National	<u>Copernicus user</u>
National Water Agency (Gospodarstwo Wody Polskie)	uptake includes
supervising:	training workshops
National Board for Water Management in Warsaw,	for various
Regional Water Management Boards,	economical
water basin management boards,	applications and
water supervisory boards.	the use of RS for
 holding ownership rights over state-owned waters, 	land use changes,
 establishing and collects water use fees and taxes, 	environmental
supervising preparation and implementation of River Basin	assessment and
Management Plans and the Flood Risk Management Plans	agriculture and
and the National Programme for Urban Wastewater	forestry.
treatment	Thera re no examples
The Ministry of Environment is responsible for:	about inland waters.
adopting the National Environmental Policy	The <u>Institute of</u>
• adopting the National Environmental Policy,	Geodesy and
• Overseeing several institutions with relevance for water	<u>Cartography</u> runs
issues, including the Chief Inspectorate Of Environmental	several R&D and support projects.
Protection (<u>Główny Inspektorat Ochrony Srodowiska</u>) which	The Remote
monitors the state of environment including the quality of	Sensing Centre.
water and the National Fund of Environmental Protection	within the Institute
and Water Management (Narodowy Fundusz Ochrony	

Środowiska i Gospodarki Wodnej) which provides funding	of Geodesy and
for environmental investments, including in the water	Cartography, has
sector. Ministry of Maritime Economy and Inland	many years of
Navigation (<u>Ministerstwo Gospodarki Morskiej i Żeglugi</u>	experience in
Śródlądowej) deals with maritime issues, fishing and inland	R&D in the field
navigation.	of using aerial and
Hydroportal is a public mapping portal gathering information on	satellite images to
water management for the territory of Poland - flood risk, the	obtain information
hydrographic network, water facilities and structures or water	about objects,
management plans, where information on surface and groundwater	phenomena and
bodies can be found.	processes taking
	place on the
Institute of Meteorology and Water Management - National	Earth's surface
Research Institute (IMGW-PIB).	Currently, the
regular hydrological measurements and observations,	Remote Sensing
• acquisition, archiving, processing and making available,	Centre carries out
hydrological measurement and observational materials,	various research
development and exploitation of hydrological mathematical	topics using
models,	optical data
Their data portals include marine meteorological observations,	(visible, thermal)
oceanographic measurements, hydrological and hydrochemical	and radar data,
data, chlorophyll a, marine radioactivity, sea water salinity, sea	we use the latest
water temperature, sea water level, ADCP data for the southern	satellite imagery
Baltic Sea.	from the
Institute of Hydro-Engineering of Polish Academy of Sciences does	COPERNICUS
research in:	Program.
Hydraulics of Rivers, Reservoirs and Estuaries, on:	They include:
dispersion of pollutants	• swamp areas
thermal regime of inland waters	(Natura 2000):

Water-ForCE is a CSA that has received funding form the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101004186.

sediment transport and local erosion	energy and
hydraulic modelling	water balance,
Their data portals include bathymetry, shoreline monitoring,	carbon cycle,
hydrodynamic, sea state, temperature data sets and a wind and	soil moisture
wave parameters data set from the south Baltic sea (1995).	• <u>natural threats</u> :
Institute of Oceanology, Polish Academy of Sciences (IO PAS) does research on	droughts,
marine and atmospheric optics, remote sensing, and marine	floods, fires,
acoustics., numerical hydrodynamics and modelling, among other	landslides;
topics. Data portals include oxygen, sea water salinity, sea water	Available data and
temperature data sets, according to EEA Standard Report for	services - Web
Marine Environment Monitoring Component, 2021.	Map Service -
Institute of Geodesy and Cartography (IGiK)	Copernicus high
• research and applied works in the field of surveying and	resolution lavers
mapping and related disciplines	
• research and applied works in the field of basic geodetic	are. wetness and
measurements	water,
 application of aerial and satellite remote sensing in 	imperviousness,
agriculture environmental protection, regional planning and	tree cover density,
agriculture, environmental protection, regional planning and	dominant leaf
public statistics	type, grasslands.
Conclusion: Active R&D in RS / Copernicus data for several appli	cations, including for

water, no implementations in regular water management.

Portugal

Water management characteristics and data	RS /
	Copernicus
	data in water
	management
	management
Responsible organizations:	Examples in the
National:	<u>Copernicus user</u>
Portuguese Environment Agency (Agência Portuguesa do	uptake include
Ambiente, APA)	Copernicus
River Basin District Administrations (RBDAs)	Events for
• Águas de Portugal (co-owner of water services, supporting	Business
municipal governments)	Innovation in
• Entidade Reguladora de Serviços de Águas e Resíduos	Portugal - use of
Central authorities:	Copernicus data
• manage freshwater and coastal zones (as well as marine	and tools by
waters),	different end-
 prepare and approve FRMPs and RBMPs, 	users acting in
 implement water management in river basins via River Basin 	fields of:
District Administrations (which are bodies of the Portuguese	Ocean
Environment Agency at regional level),	Monitoring
 supervise the guality of both drinking water and waste water 	(Azores)
services.	Coastal
 regulate waste water treatment, discharge control and 	Communities
protection of water resources by setting environmental	(Azores)
standards and the licensing/control	Forest Fires
Regional authorities:	(outside Lisbon)
River Basin District Councils (multi-stakeholder forums)	

 advise and offer technical assistance during the 	Agriculture
development of RBMPs.	(outside Lisbon)
The autonomous regions of Azores and Madeira have additional	Smart Cities
powers, including:	(Lisbon)
 prepare and approve RBMPs and FRMPs, 	Energy (Lisbon)
 responsibility for water supply (Azores). 	
Local:	
Municipalities:	There are no
 contribute to the drafting of the FRMPs and RBMPs, 	examples of RS
• take responsibility for water supply and sewerage, including	uses for inland
via municipally owned companies and multi-municipal	waters. The R&D
systems,	activities,
 take responsibility for storm water drainage. 	however, there
Multi-municipal systems, jointly owned by Águas de Portugal (a	are several
national holding company) and the municipalities in their areas, are	institutions
responsible for:	(universities,
 the abstraction, treatment and main regional distribution 	research
systems of drinking water,	centres) involved
 regional sewerage and waste water treatment. 	in projects on
Local: Municipalities:	water quality of
 promote adaptation measures to climate change 	inland and
design and validation of strategies and action plans for local	transitional
climate adaptation.	waters,
	hydrology,
Direção-Geral do Território (DGT) - responsible for:	coastal
 pursuing public policies on spatial planning, land use, 	management,
territorial and urban development, and geographic	etc.
information (GI)	
 in charge of the National Geodetic Network 	

• production of topographic and thematic cartography and	
Cadastre	
coordination of the National Spatial Data Infrastructure	
(SNIG). has an R&D department for the development of	
innovative methodologies to acquire, produce and explore	
geographic information.	
The Portuguese Institute for Sea and Atmosphere (IPMA)	
Climate change	
Remote sensing	
Risk evaluation Tsunami early warning system	
Assessment and prediction of environmental status	
Fisheries science and management	
Knowledge and innovative technologies for aquaculture	
development	
Support to high added-value activities	
Development and exploration of new products and	
technologies	
Data portals include daily and monthly climate data sets, waves,	
currents, sea level, sea temperature, air temperature,	
evapotranspiration, soil moisture.	
Conclusion: : Active R&D in RS / Copernicus data for several app	lications, including
for water, no implementations in regular water management.	

<u>Romania</u>

Water management characteristics and data	RS / Copernicus
	data in water
	management
Responsible organizations:	In the <u>Copernicus</u>
National:	<u>user uptake,</u> several
<u>National Administration Romanian Waters</u>	examples are listed,
Ministry of the Environment, Waters and Forests	that involve the
National Environment Protection Agency	Romanian Space
National Administration Romanian Waters (NARW), including	Agency (ROSA), for:
the River Basin Administrations:	Snow
• monitors and assesses status of groundwater and	monitoring
surface water, economic analysis, pressure and impact	Soil moisture
analysis,	Agriculture
• prepares the RBMP and the PoM as well as the	 Forest
FRMPs,	studies,
 carries out public participation activities, 	including one
 implements measures in the PoM and the FRMPs, 	success story
administers the dam and reservoir situated at the border	of identifying
between Romania and Moldova.	illegal
The Ministry of the Environment, Waters and Forests:	deforestation
 drafts and enforces regulations, 	Identify
• supervises the NARW.	places in the
The National Environment Protection Agency (NEPA) is	existing
responsible for regulation in the area of environmental	national
protection including permitting.	legislation
<u>Regional:</u>	where

No specific water competencies were identified at	Copernicus
regional level.	products and
Local:	services can
Counties and municipalities	further
Inter-communal Development Associations (IDAs)	improve
The Municipalities, Towns and rural Communes are responsible	policy making
for:	processes
• water supply,	In the R&D sector,
 sewerage and treatment of wastewater and pluvial 	apart from ROSA,
waters,	there are numerous
collective ownership of commercial Regional Operating	universities (e.g.
Companies providing water services.	University of
National Institute of Hydrology and Water Management	Bucharest, University
(NIHWM)	of Timisoara, etc)
 conception and policy issues within the area of 	and national institutes
hydrology hydrogeology and integrated management of	(NIRD GeoEcoMar,
water	NIRD Grigore Antipa,
 short, medium, and long range hydrologic forecasts 	NIRD Danube Delta),
 warnings of dangerous hydrologic events for 	as well as companies
prevention and management of crisis situations	(e.g. Terasigna)
(floods, droughts)	involved in projects
mathematical modelling of surface and groundwater resources, bydrological and bydrogeological synthetic	using RS data for
parameters	water quality, flood
 water resources management, eco hydrology, flood 	management,
and drought risk management, impact of human	management of
activity and of the climate changes on the	wetlands, including
hydrological regime	the Danube Delta,
development, GIS hydrological applications	developing or
	improving algorithms

 coordination of hydrologic and hydro geologic activity 	for water parameters,	
at a national level, providing the technical and	using RS in	
scientific guidance and assistance of the hydrologic	numerical modelling,	
programs of the national hydrological system	coastal management,	
	etc	
Data portals include daily hydrological characterization for	In these projects, a	
Danube and main rivers, short and medium term prognosis	part of the effort	
for the Danube and main rivers.	consists in	
National Meteorological Administration:	showcasing the use	
weather forecast	of RS/Copernicus	
climatological studies and scenarios	data for water	
climatological components within various impact and	management to	
environmental balance studies	public authorities and	
Data portals include meteorological data - air temperature, wind speed and direction, air humidity, pressure, precipitation,	municipalities.	
cloud cover, sunshine duration		
Conclusion: : Very active R&D in RS/ Copernicus data for	r several applications,	
including for water, implementations in regular water management would be the next		
step.		

<u>Slovakia</u>

Water management characteristics and data	RS / Copernicus		
	data	in	water
	manage	emei	nt
Responsible organizations:	There	is	an
	example		from
Central:	Slovakia	in	the

•	Ministry of Environment,	Copernicus user
•	Ministry of Agriculture and Rural Development,	uptake on forests
•	Slovakian Environmental Inspection	monitoring .
•	Water Research Institute (WRI)	
•	Regions with delegated competences	There are reported
The M	inistry of Environment is responsible for:	R&D activities in
•	preparing and coordinating the implementation of the	Slovakia in the field
	RBMPs, PoMs and FRMPs,	- e.g. the activities
•	managing River Basin Districts,	of the Slovak
•	identifying water planning tasks,	Hydrometeorological
•	enforcing regulations,	Institute (SHMI) are
•	carrying out analyses of sub-basin characteristics and	oriented towards
	assessing the effects of human activities on surface	satellite information
	water status and groundwater status,	applications for
•	creating and implementing monitoring programmes for	flood forecasting,
	surface waters, groundwater and protected areas,	"nowcasting" (short-
•	ensuring public participation in the implementation of the	range weather
	Floods Directive and the WFD,	forecasting) and
•	issuing permits and plans for water abstraction and water	monitoring support.
	use,	
•	monitoring and assessment of status of surface waters	
	and groundwater,	
•	monitoring wastewater discharges and their impacts on	
	the recipient bodies (through the Slovak Environment	
	Inspectorate),	
•	overseeing water services (drinking water and waste	
	water, including storm water),	
•	coordinating international cooperation on the	
	management of transboundary RBDs.	

Other ministries include:

- Ministry of Agriculture: oversees water for irrigation,
- Ministry of Economy: responsible for hydropower facilities,
- Ministry of Health: monitors drinking water and bathing water quality.

District offices of the state administration are responsible for:

- giving consent and opinions in administrative proceedings and in matters concerning transboundary waters,
- supervising water protection within the scope of their competence.

Regional:

Self-governing regions do not have significant water management competencies.

Local:

Municipalities:

- grant permits for the abstraction of surface water and groundwater and their use to households and construction projects,
- are responsible for drinking water supply, public sewers and waste water treatment (via municipally owned companies),
- perform state water protection supervision within the scope of its competence and imposes measures to remedy the identified deficiencies,
- regulate the use of small watercourses and other water bodies.

Water Research Institute:
Water sampling and Analysis for clients
 Pesticides - Assessment for authorization of plant
protection agents in SR
Flow Meter calibration
Maps/ Map services
Water monitoring
Identification of mixing zones
Primary advisement of new infrastructural project
Integrated monitoring of pollution sources
Slovak Hydrometeorological Institute (SHMU)
 Monitoring of quantitative and qualitative parameters,
characterizing air and water conditions on the territory of
the Slovak Republic, including air pollution, water quality
and environmental radioactivity
 Collection, validation, evaluation, archiving and
interpretation of data on state and regime of air and
water conditions
 Provision of operational and non-operational data and
information on conditions and regime of air and water
including weather and hydrological forecasts and
warnings to customers
Description and study of atmospheric and hydrological
phenomena.
Conclusion: Active R&D in RS / Copernicus data for several applications, including for

water, no implementations in regular water management.

<u>Slovenia</u>

Water management characteristics and data	RS /
	Copernicus
	data in
	water
	management
Responsible organizations:	There are no
National:	examples from
Ministry of the Environment and Spatial Planning	Slovenia in the
The Ministry of Environment and Spatial Planning of Slovenia is	<u>Copernicus</u>
responsible for:	user uptake.
 monitoring of the status of groundwater and surface water, 	<u>The</u>
 enforcement of regulations, 	<u>Copernicus</u>
 pressure and impact analysis and economic analysis, 	Emergency
 preparation of RBMPs and PoM, 	Management
 coordination of public participation, 	Service was
 implementation of measures, 	accessed by
co-ordination of implementation	<u>Slovenia in</u>
Slovenian Environment Agency	2014 for flood
• Preserving natural resources, biodiversity and sustainable	mapping. The
development;	country was hit
Observing, analysing and forecasting natural phenomena and	by severe
processes in the environment;	flooding after
 Reducing impact of natural hazards; 	heavy snow
Ensuring legal protection and professional assistance to	
participants in environmental encroachment procedures;	<u>RS data is</u>
	used in R&D

Contribute to building national values system in relation to	and by SMEs
the environment as well as influencing the value criteria for	in Slovenia.
environmental encroachments;	
• Ensuring high-quality environmental data for all target groups;	
• Raising the awareness of people and institutions about the	
environment and environmental issues.	
Data portals include surface water data - water level, discharge and	
temperature.	
Local:	
Municipalities (občine)	
Local authorities are responsible for:	
• protection of drinking water sources, in cooperation with the	
regional water authorities,	
• implementation of specific measures set out in the RBMP and	
FRMP,	
• drinking water supply and the collection and treatment of	
urban waste water (including supervision of service providers,	
often municipally owned companies).	
Conclusion: Active R&D in RS / Copernicus data for several application	ons, including for
water, no implementations in regular water management.	

<u>Spain</u>

Water management characteristics and data	RS /
	Copernicus
	data in water
	management
Responsible organizations:	There are
National:	some examples
	in the
Competencies on freshwater management are highly decentralized,	<u>Copernicus</u>
managed by River Basin Authorities for inter-regional river basins	user uptake
and by regional authorities for intra-regional river basins.	from Spain, on
Ministry for the Ecologic Transition	land monitoring
National Council on Water	and climate
	change studies.
State authorities:	There are
	many
• take responsibility for decision-making on fresh water, through	workshops and
consultation with the National Council on Water,	training
• approve RBMPs and FRMPs prepared by either regional or	sessions
river basin authorities,	organized for
• manage conflicts between River Basin Authorities and other	scientists
national-level issues (such as water transfers, flood	working or
management) detailed in the National Hydrologic Plan,	studying at
• take responsibility for large-scale civil protection strategies	universities or
and for coastal areas vulnerable to flood risk,	research
• undertake international cooperation, with Portugal (under the	centres;
Convention of Albufeira) and with France,	professionals of

undertake public participation at national level.	public
	organisms in
Regional:	charge of the
Biver Basin authorities	management of
Canary Islands water authority	natural and
Balaaria Islanda PR authority	agricultural
	resources, the
River Basin Authorities are responsible for inter-regional River Basins:	industry sector,
• manage river basins and prepare and implement RBMPs and	Opportunities
FRMPs for inter-regional River Basins (determining objectives,	for economic
managing resources, risk assessment, public consultation,	development
monitoring),	are presented.
• manage large-scale water users, such as agriculture or power	The R&D
generation,	activities, that
• plan and build infrastructure according to requests from the	use RS data
central government,	are focused on
• assist municipalities in implementing water-related projects.	water
The governing boards of these River Basin Authorities include	sufficiency
representatives of the central government and of the regions within	(drought being
their territories.	a major
Regional authorities are responsible for intra-regional River Basins:	problem in
• manage river basins and prepare and implement RBMPs and	Spain), basin
FRMPs for intra-regional river basins (determining objectives,	management,
managing resources, risk assessment, public consultation,	lake monitoring
monitoring),	(level, extent,
• manage land and freshwater resources, civil protection.	<u>e.g. Morales et</u>
Local:	<u>al., 2021</u>),
• Different local authorities (in charge of water supply and	water quality in
wastewater treatment)	inland,

91

Water Court of the plain of Valencia	transitional and
Council of Wise Men of the plain of Murcia	coastal waters,
Association of private or semi-public companies on water	groundwater
management	management.
	These activities
Municipalities:	also imply
 manage urban water supply and wastewater treatment (occasionally in collaboration with regional authorities), define the regulation and price to be paid for water users, manage water supply and wastewater treatment infrastructure and if applicable contract day to day management to private or semi-public enterprises, undertake urban planning and civil protection plans related to flood risk 	developing or improving algorithms and numerical models.
Communities of users bring together local stakeholders (in particular, agriculture) to resolve conflicts related to water use. Some of these bodies have deep historical roots, such as the Court of Water of the plains of Valencia (dating to the 10th century) and the Council of Wise Men of the plain of Murcia.	
 climate change and climate services marine energies and offshore engineering environmental management and planning coastal hydrodynamics and infrastructures coastal engineering and management port engineering and management National Institute for Aerospace Technology (INTA) 	

for water, steps for implementations in regular water management. have been taken.

<u>Sweden</u>

Water management characteristics and data	RS / Copernicus
	data in water
	management
Responsible organizations:	The examples from
National:	Sweden in the
Havs- och vattenmyndigheten (Swedish Agency for	Copernicus user
Marine and Water Management, SwAM)	uptake show mostly
• Environmental Protection Agency (Naturvårdsverket)	coastal studies and
<u>Geological Survey of Sweden</u> (Sveriges Geologiska	forest management.
Undersökning)	Sweden is active in
 Myndigheten för Samhällsskydd och Beredskap 	R&D and use of
(Swedish Civil Contingencies Agency)	RS/Copernicus data
Central authorities:	Swedish National

- preserve and ensure the sustainable development of Spectrum Swedish lakes and waterways, prepare national guidance, enforce regulations,
 Pile
- act as competent authorities under the WFD and Floods Directive,
- coordinate the five water authorities,
- issue regulations regarding the implementation of measures and coordination of WFD measures,
- implement certain WFD measures and coordinate implementation of others,
- finance and carry out monitoring and financing of monitoring,
- coordinate the production of regional FRPMs.
- cooperation with neighbouring countries.

Regional:

 County boards (regionstyrelser), five of which are Water District Authority for a RBD.

Sweden is divided into five water districts, which in turn cover 10 river basin districts (RBDs) reported under the WFD. One county administrative board in each water district is appointed as the authority for the water district. Counties and municipalities can belong to more than one water district. The Water Authorities:

- prepare the RBMP and the programme of measures,
- monitor groundwater and surface water,
- coordinate implementation,
- coordinate public participation,
- set environmental quality standards.

All county Administrative Boards:

Piloting downstream applications and services of relevance Coastal to Management at local and regional level - to raise the awareness and use of Copernicus data and services for municipalities at local level as well as regional authorities; a novel Artificial Intelligence (AI) method based on Sentinel-2 data was developed to identify physical changes along the Swedish coast, especially physical constructions such as piers and jetties: to support marine and terrestrial planning regarding the dynamics of the coastal zone.

enforce regulations, assess ground and surface water (including several Other agencies that • use TS / Copernicus monitoring programmes), conduct analysis on pressures and impacts, adata: coordinates with other CABs, prepare the FRMPs (at APSFR level), Swedish Forest coordinate public participation. Agency (SFA) - uses, • Swedish Agency for Marine and Water Management, SwAM among other things, environmental monitoring efforts of marine and earth observation data • freshwater bodies to monitor forest aquatic biodiversity of Swedish waters and alien harvesting. Swedish Maritime species regulations and the control of commercial fishing Administration (SMA) marine spatial planning - shipping, energy production, optimizes icebreaking and other sectors, taking into account biodiversity and and ensures maritime other environmental interests. accessibility. Swedish Civil Local authorities: local municipalities (kommuner) and Contingencies Agency stakeholder Water Councils (MSB) - benefits from Copernicus for provide water supply, sewerage and waste water monitoring forest fires treatment, either directly or via municipally owned and floods. water companies take responsibility for permits and enforcement relating Some examples from to the WFD Sweden are found in support public participation the C3S on: river coordinate with regional representatives on water hydrology, water coordination policy quality of lakes in a Swedish Meteorological and Hydrological Institute

daily forecasts to the general public and issues	changing climate,
warnings when faced with severe weather and water	urban flooding.
events	R&D activities on
risk analyses for water catchment areas	water research using
• calculations of emission and dispersion into the air	RS are very well
• forecasts and scenarios on how accidental releases	developed, and they
disperse in water	include studies <u>on</u>
	water quality of inland
	and coastal waters
	(see also <u>Philipson et</u>
	al. 2016; Kratzer et al.
	<u>2019</u>) , <u>hydrology -</u>
	flood studies (Mourad
	et al. 2022), snow
	hydrology, effects of
	climate change,
	catchment
	management. These
	projects involve public
	authorities and
	companies.
Conclusion: Very active R&D in RS / Copernicus data for seven	ral applications, including
for water, steps for implementations in regular water manager	ment. have been taken.

3.3. Opportunities and challenges for further use of RS/Copernicus data and services in water management at national level in EU

As the overview from the previous section shows, in most EU countries, use of RS/Copernicus data in regular water policy and management activities is still rather limited. With few exceptions (e.g. Finland) the potential of using such data is still only being explored in R&D activities. There are also large differences regarding advancement of these R&D activities across different countries. In these conditions it is worthwhile to address opportunities and challenges for further research, promotion and eventual use of RS/Copernicus data in national water policy and management.

Opportunities for introduction of RS/Copernicus data in national water management

- Existing and initiated R&D activities on use of RS/Copernicus data in water-related applications. Most countries have developed ecosystem of research organizations and SMEs that are active in this kind of research, supported by national and European space and remote-sensing agencies. These actors are of vital importance for demonstrating the value of RS/Copernicus data in water management applications.
- 2. R&D and demonstration activities regarding use of RS/Copernicus data should be focused on current global challenges where water

systems have a major role, such as climate change analysis and adaptation, achievement and monitoring of SDGs. These are not 'regular' water management activities, but given their importance, water agencies are requested to address them in their planning and policy development. At the same time, they require holistic and interdisciplinary approaches that combine different data sources coming from many different sectors. Through such activities, the value of RS/Copernicus data can be revealed and gradually introduced in mainstream water management as well.

- 3. Implementation and monitoring of progress with the EU water-related directives is a similar opportunity. Here, the water agencies are clearly mandated to carry out these tasks, and in some countries RS/Copernicus data are already used for these purposes (specifically for checking water quality status related to WFD and for flood hazard and flood risk maps development and validation related to FD). Such example uses should be continued, shared and replicated in other countries.
- 4. Some Copernicus services are naturally closer to inland water management activities. Examples are the Emergency Management Service (CEMS) (for managing floods and droughts), the Land Monitoring Service (CLMS) (e.g. for managing water resources, irrigation and agricultural use), or the Climate Change Service (CCCS) (for analysis of future climate). For their own operations they often need to collaborate with national water agencies. One

clear example is the collaboration of the Emergency service with national hydrological agencies for obtaining in-situ measured discharge data. These data are used for calibration and validation of the CEMS flood models, used for their mapping and forecasting activities. Such relations are very valuable and need to be developed further for bringing Copernicus services to the local water management.

- 5. In relation to the previous point, an important condition for further introduction of RS/Copernicus data in national water management is the demonstration of the value of such data on *local* water management issues and problems. Copernicus services are naturally oriented at European and global scales and contexts. However, water management activities are often much more local in nature, and demonstrations on how these data and services can be used locally would be helpful. Some initial examples of these approaches are already provided in the <u>water management sector of CCCS</u>, where some demonstrator and showcase projects are developed in partnerships with national water management organizations and show results on local scales.
- physical and biogeochemical processes in river basins, groundwater, lakes, estuaries, near coastal and ocean zones; it is a scalable technique across bodies of water, regions and applications

Challenges to the introduction of RS/Copernicus data in national water management

- Further improvements of RS/Copernicus data in terms of types of variables, spatial and temporal resolutions, accuracy and reliability are needed, as already reported in WoterForCE deliverables D1.4, D1.6, D3.1, D3.4., D 5.1, D5.2. These improvements will make such data more attractive to water managers for their regular activities.
- Demonstrator applications with *merged data* from in-situ networks and RS/Copernicus sources are needed. Examples from countries where these approaches have been applied (Finland) need to be shared and replicated.
- 3. Investments in capacity development in water agencies for use of RS/Copernicus data are needed. This is a rather critical challenge. Many national water agencies lack skilled workforce that can explore and recognize the advantages of using RS/Copernicus data. Most current capacity development efforts are initiated by and delivered to actors active in the RS / space domain. Expanding these to the water management actors is both a financial and institutional challenge. One possible avenue is inclusion of water agencies in R&D projects and innovations specifically oriented to usage of RS/Copernicus data. However, moving beyond research activities towards capacity development for usage of RS/Copernicus in regular water management activities is also required.

- 4. Closer cooperation between RS/ Copernicus services and national water monitoring organizations. Such cooperative activities need to go beyond concerns related to the importance of in-situ water monitoring networks for calibration and validation of satellite-based products. Joint engagement in local water management (in research and in operations), where usage of merged data will bring value is needed (see point 1), bringing in the advantages of both approaches.
- 5. As mentioned in the introductory sub-section 2.1, water management is a rather 'conservative' sector, which is often guided by regulations. Introducing usage of RS/Copernicus data as mandatory in water-related regulations is still far away, but initial explorations of such possibilities are needed. Again, this could start in areas of the European and global challenges mentioned above (WFD implementation and monitoring, SDGs, climate change analysis and adaptations), with demonstrations how RS/Copernicus data can lead to generalized and unified approaches (e.g. example research in Estonia).

102

4. International use of RS

4.1 International initiatives to streamline the use of EO There are multiple inter-governmental initiatives with exclusive mandates on streamlining the use of Earth Observation in solving global challenges including sustainable development. One of the major initiatives in this regard is Group on Earth Observations (GEO) which is a partnership of more than 100 national governments and organizations with major objective being main streaming Earth observation data for decisions and actions for the benefit of humankind by coordinated, comprehensive and sustained activities (url: www.earthobservations.org). GEO initiated the development of Global Earth Observation System of Systems (GEOSS) with the Committee on Earth Observation Satellites (CEOS) contributing to the technical side of the development. CEOS was established to provide coordination of the Earth observations provided by satellite missions, recognising that no single programme, agency or nation can satisfy all of the observational requirements that are necessary for improved understanding of the Earth system. Currently CEOS has 32 space agency members. CEOS provides a broad framework for international coordination on space-borne EO missions. The main objective of the GEOSS is to better integrate observing systems and share data by connecting existing infrastructures using common standards. There are more than 400 million open data resources in GEOSS (url: www.geoportal.org/) from more than 150 national and regional providers such as NASA and ESA; international organizations such as WMO and from the private sector. Together these

efforts are expected to reap larger societal benefits in different application areas including weather, water, agriculture, health, disaster management, biodiversity etc.

The EO from space is internationally regulated by the Outer Space Treaty (OST),1967; the UN Resolution on Principles relating to Remote Sensing of the Earth from OuterSpace, 1986; and the World Meteorological Organisation (WMO) Resolution 40 adopted in 1995. In addition, many countries have their own policies developed on EO regulations and the use of remote sensing in emerging global topics. Here the role of GEO is to bring together these policies in such a way that it will promote data sharing to combat global challenges including water resource management and monitoring.

The open data policies adopted by NASA, the French space agency, Centre National d'Etudes Spatiales (CNES), the European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), and the Indian Department of Space Research Organisation (ISRO) has resulted in the availability of enormous amount of EO data in the public domain. Under the Copernicus programme, ESA provides free access to their satellite data and the derived products. For last three decades, EO data has been used extensively as a reliable source for informed decisions, for example in weather, climate, crop monitoring and early warning systems. Examples are the U.S. Agency for International Development's Famine Early Warning

Systems Network–FEWS NET (Funk et al. 2019), and the Centre régional de formation et d'application en agrométéorologie et hydrologie opérationnelle (AGRHYMET - http://www.agrhymet.ne/) of the Permanent Interstates Committee for Drought Control in the Sahel (CILSS). Some African countries have also invested in developing nano/cube-satellites, such as Algeria (AISat), Nigeria (NigeriaSat) and South Africa (SumbandilaSat, SUNSAT, ZACube-2) (Ifejika Speranza et.al, 2022). Most recently United Arab Emirates also entered into Earth observation satellites by deploying their own satellites (Khalifasat, Dubaisat etc).

4.2 Available RS data for water quantity and water quality modelling

In this sub-section the RS data availability to key inputs for water quantity and water quality models are explored. Data provided by Copernicus services are not focused here as they are explained in other deliverables. Here the focus is given to other global datasets from providers outside Europe. In the water quantity modelling, data are required from the following domains - topography, climate, soil, land cover, water level, discharge and flood extent. The use of remote sensing data can be broadly divided into two: (1) use of remote-sensing data to create some of the spatially distributed input parameter sets for a model, and (2) constraining of models during calibration by spatially distributed data derived from remote sensing (Brunner et.al, 2007).

For topography, satellite derived Digital Elevation Models (DEM) are widely used. DEM's are available at global scale from multiple sources like NASA Shuttle Radar Topography Mission (SRTM) at 90 m, ALOS World 3D at 30 m from JAXA, Copernicus DEM GLO-30 and GLO-90 at 30 and 90 m respectively. There are domain specific derived DEM's like HydroSHEDS Hydrologically Conditioned DEM at 90 m exclusively developed for hydrological applications like water resource modelling (Lehner et.al, 2008). Within the climatic variables, the most important variable derived directly from satellite data is precipitation. Most important products are Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) and Global Precipitation Measurement (GPM) (collaborative mission between space agencies). Both CHIRPS and GPM offers 35 + years of precipitation data at daily scale, however the spatial resolution is coarse approximately 5 Km. There are no specific satellite derived products available for soil from the international agencies. For land cover land use, which is one of the major components while performing water use assessments and water accounting, there are multiple products available namely, MODIS Land cover product at 250 m which is available annually, Copernicus land cover product at 100m annually available since 2015 (upto 2019) (url: https://lcviewer.vito.be/) to high resolution global land cover products like ESA land cover at 10m available for 2020 and 2021 developed from Sentinel 2 data (url: https://esa-worldcover.org/en). Most recent highresolution product released was from Google called Dynamic world based on deep learning models at 20 m resolution based on both Landsat and

sentinel data. Water level data are available from Copernicus global land service and Database for Hydrological Time Series of Inland Waters (DAHITI), both very sparse. Water discharge data is very difficult to find and there are no sources available from Remote sensing. Determining the flood area is often done on a demand basis. Though this is of high interest there is no centralised platform providing near real time flood inundation maps using Synthetic Aperture Radar (SAR) data. In this aspect the synthetic aperture data is widely and efficiently used to map the waterlogged area. Hence it is very important to have the SAR data sets available near real time from multiple sources to be able to use by agencies to map out the flood extent soon after the disaster strikes. Most useful ones are sentinel 1 from ESA, ALOS PALSAR from JAXA (recently made available in public domain etc. In order to quantify the water use by different sectors the most useful data is spatially distributed Actual Evapotranspiration (ETa) normally derived from the thermal bands. The open datasets for ETa are Operational Simplified Surface Energy Balance (SSEBop) based on MODIS data (~1km spatial resolution) (url: https://earlywarning.usgs.gov/ssebop/modis), MOD16 ETa product (8 day, monthly at 500 spatial resolution) m (url: https://modis.gsfc.nasa.gov/data/dataprod/mod16.php)and WaPOR ETa (Dekadal and monthly at 250 m for Africa and Near East countries) (url: https://wapor.apps.fao.org/). Recently a provisional high resolution ondemand ETa product at 30 m was introduced by USGS based on Landsat

data (url: https://www.usgs.gov/landsat-missions/landsat-collection-1provisional-actual-evapotranspiration-product).

Water quality parameters globally are available from NASA OceanColor Web database (url: https://oceancolor.gsfc.nasa.gov/) where daily data on Chlorophyll-a, Particulate Organic Carbon, Photosynthetically Active Radiation, Reflectances are provided. The data provided from OceanColor web are primarily aimed for oceans, though major inland water bodies are also covered in the database. The spatial resolution is 1 - 4 Km and the data is derived from SeaWiFS, MODIS and Sentinel 3 OLCI sensors. Another important source is the Copernicus Global land service (CGLS) (url: https://land.copernicus.eu/global/products/lwq) where water quality parameters for inland water bodies are provided. The variable provided are Chlorophyll-a, Trophic State Index (TSI) and Turbidity. The products are derived from Sentinel 3 OLCI and Envisat MERIS sensors at 300m resolution.

For physical properties of inland water bodies like surface area, water level and surface water temperature there are multiple project-based initiatives developing global databases. The Database for Hydrological Time Series of Inland Waters (DAHITI) was developed by the Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM) in 2013 to provide water level time series of inland waters (url: https://dahiti.dgfi.tum.de/). DAIHITI provides remote sensing altimetry

based water level data (historical to near real time) for 10042 inland water bodies all over the world. CGLS also provides alitimetry based water level data for many lakes and rivers around the world (url: https://land.copernicus.eu/global/products/wl).

Lake Surface Water Temperature (LSWT) is another physical property which is derived from the thermal bands of satellite data. There are multiple databases available which offers LSWT data of multiple inland waterbodies around the world. CGLS provided ongoing archive LSWT derived from Sentinel 3 SLSTR and Envisat AATSR at 1 km spatial resolution. The data is provided near real time within 3-5 days of latency. There are other project based databases like ArcLakes and GloboLakes which provides historical data of LSWT for hundreds of lakes globally (url: http://www.laketemp.net/home/).

More details on water quality parameters which can measured using EO and available products are covered in WP 2 deliverables.

4.3 Global Initiatives to disseminate Earth Observation data/products for water challenges

In this section several examples on thematic remote sensing based initiatives globally related to water are explained. Traditionally RS based Rainfall and ETa data have been used successfully in water balance studies all over the world. In recent years, there were lot of interest in

developing the concept of Water accounting which aims at quantifying the water availability per sector usually in a basin. Water Accounting requires systematic acquisition, analysis and communication of data and information related to stocks and fluxes of water in natural, disturbed or heavily engineered environments within a geographical area such as an irrigation system, a river basin or a country. In this context remote sensing based spatial observations play key role in implementing water accounting analysis around the world. Three major RS data products are being used in the water accounting analysis, i) Land cover maps, ii) Actual EvapoTranspiration iii) Rainfall and iv) Net Primary Production (NPP). These data are usually obtained from the RS based data sources as explained in the above section 4.2. The Water Accounting Plus framework is developed by a partnership consisting of IHE Delft Institute for Water Education, the International Water Management Institute and the Food and Agricultural of the UN (url: www.wateraccounting.org).

Remote Sensing based products are also used extensively in modelling floods and droughts which are essentially quantifying the water availability over an area for a given time period. Time series of precipitation data available from micro wave remote sensing sensors and DEM data (see Section 4.2) are used as an input to hydrodynamic and hydrological models for the prediction of flood dynamics. With the availability of high-resolution Synthetic Aperture Radar (SAR) data, flood inundated areas are accurately mapped post disaster. Below several data dissemination

platforms are introduced which also contributes to these applications worldwide.

FAO's portal to monitor Water Productivity through Open-access of Remotely sensed derived data (WaPOR) uses satellite data to help countries monitor agricultural water productivity, identify water productivity gaps and find solutions (url: https://wapor.apps.fao.org/). The portal offers RS derived products on ETa, ETp and NPP over Africa and Near East countries near real time. The data is available at three different spatial resolutions, 250 m (entire area), 100 m (Selected countries) and 30 m (few selected areas) at different temporal aggregations (decadal, monthly) since 2009.

SERVIR is a joint initiative of the NASA and United States Agency for International Development (USAID), and leading geospatial organizations in Asia, Africa, and Latin America. SERVIR partners with countries and organizations in these regions to address critical challenges in climate change, food security, water and related disasters, land use, and air quality. Using satellite data and geospatial technology, SERVIR codevelops innovative solutions through a network of regional hubs to improve resilience and sustainable resource management at local, national and regional scales. SERVIR also provides RS derived data for selected areas on flood prone areas, water quality parameters etc (url: https://www.servirglobal.net/).

World Resource Institute's Aqueduct is a data platform providing global outlook on water stress and flood prone areas among many other variables available in the platform (url: https://www.wri.org/aqueduct/tools). Though the products are not directly derived from RS, there are many RS based inputs which drives the models behind the products provided by Aqueduct.

Global surface water explorer developed by EU Joint Research Centre (JRC) provides temporal dynamics of surface water globally at high resolution of 30 m (url: https://global-surface-water.appspot.com/). The product is developed from the historical Landsat images (1984 - 2021) and provide derived spatial layers on water occurance, seasonality, recurrence, transitions and maximum water extent in the last 4 decades.

The Freshwater Ecosystems Explorer primarily focusing on SDG indicator 6.6.1 (Change in the extent of water-related ecosystems over time) is an open data platform which provides high-resolution geospatial data depicting the extent freshwater ecosystems change over time (url: https://www.sdg661.app/). The data is intended to drive action to protect and restore freshwater ecosystems and enable countries to track progress towards the achievement of Sustainable Development Goal Target 6.6. Data can be visualized and downloaded at national, sub-national and basin levels. Data is available on permanent and seasonal surface waters, reservoirs, wetlands, mangroves, water quality.

Digital Earth (DE) Africa platform is developed in collaboration with the partners in the Africa continent to leverage the use of Earth observations to address key challenges of the continent including water and food security (url: https://www.digitalearthafrica.org/). The platform enables African governments, industry and decision makers to track changes across the continent in different themes. This provides valuable insights for better decision making across many areas, including flooding, drought, soil and coastal erosion, agriculture, forest cover, land use and land cover change, water availability and quality, and changes to human settlements. For example DE Africa offers a continental wide service called Water observations from Sapce (WOfS) which covers the following layers, water and non-water classification, the ratio of wet to clear observations per calendar year and the ratio of wet to clear observations over longer time period.

The Worldview platform from NASA's Earth Observing System Data and Information System (EOSDIS) provides interactive browse of thousands of satellite images and products primarily from NASA satellites. The major advantage of the platform is that the data is updated within three hours after acquisition. The user can also preview, search and download from the platform. The real time snapshots of the data are critical especially for quick monitoring after any disaster.

4.4 Integration of EO in water quantity and quality modelling at policy level

GEO is working with the member countries to increase the uptake of EO data in their monitoring and reporting systems. However, other than the global examples mentioned in the section 4.3 and isolated consortium projects a systematic national level system for periodic monitoring of water resources contributing to the reporting is still rare to find. There is still a large gap between the availability of data and how this data is being used for operational monitoring at national/country scale. Few countries now have data regulations in place related to Earth observations. Following the efforts of GEO it can be expected that more countries will adopt legislation in the near future: over 40 countries now have Earth observation systems and the trends toward commercialization and privatization have gained momentum in recent years (Harris & Boumann, 2021).

Key challenges in integrating the use of EO data for monitoring and assessing water resources at policy level are the lack of capacity, lack of trust in this data among the decision makers, un reliable temporal revisits especially for using in disaster responses. The acceptance of this technology in the operational use varies between countries, some being in the forefront while others still in very beginning stage. While there is plethora of digital platforms available, the uptake of these platforms in real use cases are still missing which results in less usage than expected.

Hence raising awareness on the usability of the EO data in water resource management and capacity development is key to ensure adaptation of this technique by the governments.

5. Conclusions

Present report made an extensive overview of the use of Copernicus Services to support water related policies in Europe, both at European level and at country level. After the thorough analysis at country level, the report looks at RS in general and EO, in international context.

At EU level water policy in all member states is based on the relevant EU Directives, most important of which are the Water Framework Directive (WFD) and the Flood Directive (FD). These have been translated into corresponding national legislation, and have led to development of River Basin Management (FRM) and Flood Risk Management (FRM) plans. Implementation of these directives, in particular the development of RBM and FRM plans have involved extensive modelling of the water systems, mostly with data from existing in-situ monitoring networks. Some recent initiatives for demonstrating the usefulness of Copernicus data in monitoring and assessing progress with implementation of WFD. However, such examples come from research centres and actors actively engaged in Copernicus uptake, and expansion to regular water management activities is yet to be realised. This report makes an extensive overview of the use of Copernicus data at national levels

A) Citations

- Aleksieva-Petrova, A.; Mladenova, I.; Dimitrova, K.; Iliev, K.; Georgiev, A.; Dyankova, A. Earth-Observation-Based Services for National Reporting of the Sustainable Development Goal Indicators–Three Showcases in Bulgaria. *Remote Sens.* 2022, 14, 2597. DOI:10.3390/rs14112597
- Bisselink, B., Bernhard, J., Gelati, E., Adamovic, M., Guenther, S., Mentaschi, L. and De Roo, A., (2018) Impact of a changing climate, land use, and water usage on Europe's water resources: A model simulation study, EUR 29130 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-80288-1, doi:10.2760/09027, JRC110927.
- D1.4 Report with end-user needs and requirements, (2022) (Water-ForCE deliverable, leading partner: ICCS)
- D1.6 Report with analysis for business opportunities, validated by industry, 2022 (Water-ForCE deliverable, leading partner: dotSPACE)
- D2.2 Recommendations on Copernicus products Water Quality, 2021 (Water-ForCE deliverable, leading partners: FvB/IGB)
- D3.2 Review document on Copernicus products related to the hydrological water balance (Water-ForCE deliverable, leading partners: Vrije Universiteit Brussel and Antea Belgium)
- European Commission, Directorate-General for European Civil Protection and Humanitarian Aid Operations (ECHO), (2021), Overview of natural and man-made disaster risks the European Union may face : 2020 edition, Publications Office, 2021, Doi: 10.2795/1521
- European Commission, Joint Research Centre, De Roo, A., Bisselink, B., Guenther, S., et al., Assessing the effects of water saving measures on Europe's water resources : BLUE2 project : freshwater quantity, Publications Office, 2020, https://data.europa.eu/doi/10.2760/739798

- European Environment Agency, Ferreira, A., Kolaszewska, D., Adriaenssens, V., et al., Green infrastructure and flood management: promoting cost-efficient flood risk reduction via green infrastructure solutions, Publications Office, 2017,
- Funk, J., Merino, F., Schaks, M. et al. A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks. Nat Commun 12, 5329 (2021). https://doi.org/10.1038/s41467-021-25682-5
- Joint Research Centre, Institute for Environment and Sustainability, Vandecasteele, I., Baranzelli, C., De Roo, A., et al., Evaluation of the effectiveness of natural water retention measures: support to the EU blueprint to safeguard Europe's waters, Publications Office, 2012, https://data.europa.eu/doi/10.2788/5528
- Kratzer S, Kyryliuk D, Edman M, Philipson P, Lyon SW. Synergy of Satellite, In Situ and Modelled Data for Addressing the Scarcity of Water Quality Information for Eutrophication Assessment and Monitoring of Swedish Coastal Waters. Remote Sensing. 2019; 11(17):2051. https://doi.org/10.3390/rs11172051
- Morales, S.; Ruiz, M.; Soria, J. Water Level Fluctuations in Gallocanta Lake (Spain) Using Sentinel-2 Remote Sensing. Preprints 2020, 2020090100 (doi: 10.20944/preprints202009.0100.v1)
- Mourad K.A., Nordin L., Andersson-Sköld Y. (2022) Assessing flooding and possible adaptation measures using remote sensing data and hydrological modeling in Sweden, *Climate Risk Management*, Volume 38, 2022,- 100464, ISSN 2212-0963, <u>https://doi.org/10.1016/j.crm.2022.100464</u>
- Olesen, J E. Climate change, impacts and vulnerability in Europe 2012: An indicator-based report. Vol. 12 European Environment Agency - EEA, 2012. p. 158-171.
- Philipson, P., Kratzer, S., Ben Mustapha S., Strömbeck, N. & Stelzer K. (2016) Satellite-based water quality monitoring in Lake Vänern, Sweden, International Journal of Remote Sensing, 37:16, 3938-3960, DOI: 10.1080/01431161.2016.1204480

 Remetey-Fülöpp G. (2013) Remote sensing and GIS in Hungary, Geocarto International, 28:1, 1-2, DOI: 10.1080/10106049.2013.766427SEI. 2016, WEAP Tutorial; Stockholm Environment Institute: Stockholm, Sweden

B) Links to websites mentioned in deliverable

Remarks: All sites were last visited on 20 December 2022

- http://www.waterlevel.ie/
- http://www.wateraccounting.org/
- http://www.cnrs.fr/)
- http://www.cadc-albufeira.eu/es/
- https://boe.es/buscar/doc.php?id=BOE-A-2003-19570
- https://boe.es/buscar/doc.php?id=BOE-A-2012-11464
- https://www.dwd.de/DE/leistungen/wawis/wawis.html
- https://remotesensing.vito.be/case/watermonitor
- https://kosmos.ut.ee/en/remote-sensing-water
- http://paikkatieto.ymparisto.fi/vesikarttaviewers/Html5Viewer_2_11_2/Index.html?c onfigBase=http://paikkatieto.ymparisto.fi/Geocortex/Essentials/REST/sites/Vesikart taKansa/viewers/VesikarttaHTML525/virtualdirectory/Resources/Config/Default&lo cale=fi-FI
- https://climate.copernicus.eu/water-management
- https://www.copernicus.eu/en/use-cases/web-service-platform-maltese-waters
- https://waterveiligheidsportaal.nl/
- https://earsc.org/sebs/all-cases/water-quality-management-in-germany/
- https://earsc.org/sebs/water-quality-in-finland/
- https://www.waterkwaliteitsportaal.nl/
- https://voda.gov.cz/?page=Home
- https://eau.gouvernement.lu/fr.html
- https://info.bml.gv.at/en/topics/water/water-and-data-wisa.html
- https://www.weo-water.com/
- http://www.moa.gov.cy/moa/wdd/wdd.nsf/index_en/index_en?opendocument
- https://map.geoportail.lu/theme/eau?bgLayer=basemap_2015_global&version=3&z oom=9&X=667917&Y=6394482&lang=fr&rotation=0&layers=&opacities=

- https://www.eurisy.eu/stories/water-board-de-stichtse-rijnlanden-integrated-watermanagement-using-satellite-information_58/
- http://www.lesagencesdeleau.fr/
- https://www.eurisy.eu/wp-content/uploads/2022/09/Wallonia_Monitoring-andpreventing-floods.pdf
- https://www.eurisy.eu/stories/vof-school-jansen-more-crop-per-drop-thanks-tosatellite-information_61/
- https://voda.gov.cz/?page=Home
- https://veka.eelis.ee/veka.aspx
- https://www.um.edu.mt/
- https://www.lu.lv/en/
- https://dutchwaterauthorities.com/
- https://opw.ie/en/
- https://www.cyi.ac.cy/
- https://www.copernicus.eu/sites/default/files/2018-10/copernicus4regions.pdf
- https://kosmos.ut.ee/en
- http://wwwi4.ymparisto.fi/i4/eng/tarkka/index.html?type=RGB&date=2019-12-16&datespan=1&name=AUTUMN&lang=en&zoom=5&lat=64.00373&lon=26.99417
- http://wfdver.ypeka.gr/el/home-gr/
- https://www.space4water.org/
- http://rst-tto.com/rsttakt/index.php/newsroom/news-releases/50-nrp-scp
- https://www.spaceoffice.nl/en/satellite-data-portal/
- https://rss-hydro.lu/
- https://www.stowa.nl/sites/default/files/assets/PUBLICATIES/Publicaties
 2020/STOWA 2020-27 Remote Sensing.pdf
- http://rst-tto.com/rsttakt/
- https://rijnland.maps.arcgis.com/home/item.html?id=e772a5876dae4ad686d728e8 21ae5dfc
- https://waterinfo.rws.nl/
- https://maps.rijkswaterstaat.nl/GeoWebPortaal/
- https://maps.rijkswaterstaat.nl/dataregister/srv/dut/catalog.search
- https://kaugseire.ee/
- https://www.rews.org.mt/
- https://www.umweltbundesamt.de/daten/datensuche/?s=score&d=desc&t=Wasser &l=de

- https://keskkonnaportaal.ee/et/teemad/vesi
- https://www.copernicus-user-uptake.eu/useruptake?tx_news_pi1%5BoverwriteDemand%5D%5Bcategories%5D=62&cHash=fc f2196f9c8a09e4303ea173edf483ac
- https://open4innovation.at/en/
- https://data.public.lu/en/organizations/administration-de-la-gestion-de-leau/
- https://www.nhi.nu/
- https://www.ilmateenistus.ee/siseveed/hudroloogiline-prognoos/?lang=en
- https://www.helpdeskwater.nl/onderwerpen/wetgeving-beleid/nationaal/nationaalwater-programma-2022-2027/
- https://ehdatahub.maaamet.ee/dhus/
- http://www.hydro.bg/indexen.html
- https://www.miteco.gob.es/es/agua/temas/planificacion-hidrologica/planificacionhidrologica/plan-hidrologico-nacional/
- https://www.zwemwater.nl/
- https://www.nfosigw.gov.pl/en/
- https://www.eurisy.eu/stories/the-central-command-for-maritime-emergenciesuses-satellite-information-to-monitor-sea-pollution-on-german-coastal-states_7/
- https://www.rijkswaterstaat.nl/en
- https://envir.ee/en/water-forest-resources/water
- https://www.varam.gov.lv/en
- https://www.minambiente.it/aree/acqua
- https://mecdd.gouvernement.lu/en/service.html
- http://ypeka.gr/
- https://energy.gov.mt/en/Pages/default.aspx
- https://mmm.fi/en/frontpage
- https://www.gov.pl/web/gospodarkamorska/podstawowe-informacje
- https://micka.cenia.cz/en/
- https://space-agency.public.lu/en.html/
- https://www.meteolux.lu/?lang=fr
- https://www.collgs.lu/
- http://watersandcommunities.ie/about/
- http://www.meteo.lt/en
- https://www.lgt.lt/index.php/en/
- https://www.lhei.lv/en/

- https://videscentrs.lvgmc.lv/
- https://www.eurisy.eu/stories/municipality-of-lemvig-denmark-managing-pipelinesand-wastepipes-with-the-support-of-satellite-data_238/
- https://www.eurisy.eu/stories/lake-neusiedl-monitoring-water-quality-with-satelliteimagery_8/
- https://www.ku.lt/en/
- https://www.internetofwater.be/
- https://www.vesi.fi/
- https://www.arera.it/it/inglese/index.htm
- http://www.isprambiente.gov.it/en/topics/Inland-and-coastal-marine-waters/index
- https://www.water.ie/
- https://www.copernicus.eu/sites/default/files/2018-10/copernicus4regions.pdf
- https://www.ihw.nl/home
- http://www.hobe.dk/
- https://www.hydroinfo.hu/
- https://www.vri.lv/en/how-we-work/copernicus/
- https://www.usgs.gov/landsat-missions/landsat-collection-1-provisional-actualevapotranspiration-product
- https://www.theia-land.fr/
- https://www.tandfonline.com/doi/full/10.1080/10106049.2013.766427?scroll=top&n eedAccess=true&role=tab
- https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1204480?cookieSet=
 1
- https://www.smhi.se/en/q/Stockholm/2673730
- https://www.servirglobal.net/
- http://www.ovf.hu/en/
- https://www.met.hu/en/idojaras/
- https://www.sciencedirect.com/science/article/pii/S2212096322000717
- https://earsc.org/sebs/aquifer-management-in-spain/
- https://www.preprints.org/manuscript/202009.0100/v1
- https://www.mdpi.com/2072-4292/11/17/2051
- https://www.mbfsz.gov.hu/en/hydrogeological-data-store
- http://www.laketemp.net/home/
- http://www.inhga.ro/en/web/guest/rivers-forecast
- http://www.igik.edu.pl/en/Services

- http://www.igik.edu.pl/en/research-areas
- http://www.ibwpan.gda.pl/en
- https://www.himiofots.gr/en/the-project)
- https://www.globalsecurity.org/space/world/slovakia/earth.htm
- https://www.eeagrants.gov.pt/en/programmes/environment/agenda/
- https://www.eea.europa.eu/publications/92-9167-001-4/page008.html
- https://www.digitalearthafrica.org/
- https://www.d-copernicus.de/daten/beispiele-und-anwendungen/meeresumweltund-kuestengewaesser/
- https://www.copernicus.eu/en/slovenian-sme-boosts-copernicus-data-accesscitizens-free-visualisation-tools
- http://www.brockmann-geomatics.se/aquatic-projects/water-quality-monitoring/
- https://www.blki.hu/en/node/14854
- https://webgr.inrae.fr/activites/base-de-donnees/
- https://web.jrc.ec.europa.eu/policy-model-inventory/explore/models/model-lisflood
- https://wapor.apps.fao.org/
- https://oceancolor.gsfc.nasa.gov/
- https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
- https://lcviewer.vito.be/
- https://land.copernicus.eu/global/products/wl
- https://land.copernicus.eu/global/products/lwq
- https://global-surface-water.appspot.com/
- https://eurogoos.eu/member/slovenian-environment-agency/
- https://esa-worldcover.org/en
- https://emergency.copernicus.eu/mapping/list-of-components/EMSR070
- http://emergency.copernicus.eu/EMSR268
- https://edurank.org/engineering/remote-sensing/hu/
- https://edmo.seadatanet.org/report/193
- https://earlywarning.usgs.gov/ssebop/modis
- https://dl.acm.org/doi/10.5555/3028366.3028386
- https://dahiti.dgfi.tum.de/en/
- https://climate.copernicus.eu/taxonomy/term/141
- https://climate.copernicus.eu/climate-proof-river-water-balance
- https://voda.hr/en
- http://www.gios.gov.pl/en/

- https://www.wody.gov.pl/
- https://www.bafg.de/GRDC/EN/Home/homepage_node.html
- https://data.geus.dk/geusmap/
- https://www.umweltbundesamt.de/en/topics/water/drinking-water
- https://www.lawa.de/
- https://www.dwd.de/DE/leistungen/wawis/wawis.html
- https://www.bafg.de/EN/06_Info_Service/info_service_node.html
- https://www.umweltbundesamt.de/en
- https://www.copernicus-user-uptake.eu/partner/partnerdetails?tx_hwtaddress_address%5Baddress%5D=12&cHash=c356cb5b271457d1 955bce64d1573db6
- https://geoportaal.maaamet.ee/eng/Spatial-Data/National-Satellite-Data-Centre-ESTHub-p654.html
- https://eng.geus.dk/water-resources
- https://www.cenia.cz/geoinformatics/
- https://en.vmm.be/water
- https://earsc.org/sebs/wp-content/uploads/2019/03/Flood-management-Ireland-Full-case.pdf
- https://www.copernicus-user-uptake.eu/user-uptake/details/eo-for-waterframework-directive-and-marine-strategy-framework-directive-monitoring-36
- https://en.ilmatieteenlaitos.fi/precipitation-in-finland
- https://www.syke.fi/en-US
- https://www.lawa.de/
- https://www.copernicus-user-uptake.eu/partner/partnerdetails?tx_hwtaddress_address%5Baddress%5D=8&cHash=f8580c937299722896 5a82652a296e7c
- https://eea.government.bg/en
- http://www.cmcc.it/
- https://ec.europa.eu/environment/water/index_en.htm
- https://issuu.com/easestonia/docs/estonian_space_technologies_phone_book_2020
- https://eas.ee/en/estonian-space-office/
- https://keskkonnaagentuur.ee/water

- https://www.copernicus-user-uptake.eu/user-uptake/details/downstream-serviceapplication-development-for-supporting-implementation-of-eu-water-frameworkdirective-in-estonia-194
- https://eng.mst.dk/nature-water/aquatic-environment/
- https://environnement.public.lu/fr.html
- http://environnement.wallonie.be/
- https://era.org.mt/
- https://www.umweltbundesamt.at/en/
- https://energywateragency.gov.mt/
- http://i.emowaf.eu/
- https://austria-in-space.at/en/projects/2015/eop-danube.php
- https://www.copernicus-user-uptake.eu/user-uptake/details/eo-for-waterframework-directive-and-marine-strategy-framework-directive-monitoring-36
- https://eo4water.com/
- https://www.dwd.de/DE/leistungen/_functions/Suche/Suche_Formular.html?nn=78 1246
- https://droogteportaal.nl/droogteportaal/web/
- https://www.copernicus-user-uptake.eu/user-uptake/details/downstream-serviceapplication-development-for-monitoring-of-environmental-indicators-europe-171
- https://www.dinoloket.nl/en
- https://www.obzoreuropa.hr/structure-second-pillars/index/4
- https://www.housing.gov.ie/
- https://geohub-delfland-1-hhdelfland.hub.arcgis.com/
- https://data.nhi.nu/
- https://www.eurisy.eu/stories/danube-river-basin-directorate-satellite-informationfor-risk-assessment_57/
- https://ufm.dk/en?set_language=en&cl=en
- https://www.dmi.dk/
- https://eng.sdfi.dk/
- http://www.spaceexploration.org.cy/
- http://www.cyprusremotesensing.com/
- https://www.eurisy.eu/stories/cyprus-audit-office-eo-to-support-beach-inspectionsimprove-coastal-management-and-prevent-environmental-damage/
- https://hydro.chmi.cz/index.php?lng=ENG
- https://meteo.hr/index_en.php

- https://www.copernicus-user-uptake.eu/
- https://www.copernicus-user-uptake.eu/
- https://www.copernicus.eu/en/copernicus-services
- https://wqems.eu/
- https://www.copernicus-user-uptake.eu/user-uptake/details/launch-of-copernicusacademy-relay-in-ireland-1-415
- https://en.wikipedia.org/wiki/Commission_for_Energy_Regulation
- https://www.ecologique-solidaire.gouv.fr/gestion-leau-en-france
- https://www.klimaatadaptatiebrabant.nl/
- https://www.ely-keskus.fi/en/web/ely-en/environment
- https://edurank.org/uni/budapest-university-of-technology-and-economics/
- https://environment.brussels/
- https://balticsatapps.eu/
- https://austria-in-space.at/en/
- https://arcos-project.eu/dashboard
- https://www.eurisy.eu/stories/arno-river-basin-authority-using-satellite-maps-toimprove-monitoring-of-hydrogeological-phenomena_27/
- https://www.copernicus-user-uptake.eu/user-uptake/details/agrometeorologicalmodelling-based-on-copernicus-regional-reanalysis-data-451
- https://austria-in-space.at/en/projects/2019/acube4floods.php
- https://www.eea.europa.eu/about-us/who/key-partners
- https://www.eea.europa.eu/articles/eea-25-years-of-growing
- https://www.eea.europa.eu/about-us/who/copernicus-1
- https://www.eea.europa.eu/about-us/who
- https://www.copernicus.eu/sites/default/files/2021-01/Copernicus_ENG_digital.pdf

