Eawag: Swiss Federal Institute of Aquatic Science and Technology

Advancing aquatic science and EO cal/val using optical measurements by an automated profiler

Daniel Odermatt¹, Camille Minaudo², Abolfazl Irani Rahaghi¹, Johny Wüest²

¹Eawag, Dept. Surface Waters – Research and Management, Remote Sensing Group ²Swiss Federal Institute of Technology Lausanne, ENAC, Aquatic Physics Group

Challenge 1: Reflectance uncertainties

WISPstation measurements, Greifensee, 10 May 2021.

Screenshot from www.datalakes-eawag.ch

Challenge 2: Vertical gradients

Minaudo, C., Odermatt, D., Bouffard, D., Irani Rahaghi, A., Lavanchy, S., and Wüest, A. (submitted). Diel and seasonal drivers of vertical patterns in inherent water optical properties of a large lake.

eawag quatic research **b**ood

Challenge 3: EO cal/val and aquatic science

bal Lake Ecological Observatory Network (GLEON) for synthesising high-frequency ministic ecological models. Inland Waters 5, 49–56. https://doi.org/10.5268/IW-5.1.566 **eawag** guatic research

Challenge 4: Lake morphology

Multibeam echosounding bathymetry in Lake Zurich at Oberrieden. From 'Underwater Landscapes', F. Anselmetti et al., Swiss Geoscience Meeting 2013.

LéXPLORE and Thetis profiler in Lake Geneva

Minaudo, C., Odermatt, D., Bouffard, D., Irani Rahaghi, A., Lavanchy, S., and Wüest, A. (submitted). The imprint of primary production in high-frequency profiles of lake optical properties.

Custom Thetis sensor configuration

Instrument	Variables	∆z [cm]
Sea-Bird CTD SBE 49	Water temperature, conductivity, pressure ⁽¹⁾	0.55
Sea-Bird SBE 63	Dissolved oxygen concentration	10.6
WetLabs AC-S	Hyperspectral absorption, attenuation 81 channels from 400 to 730 nm	2.2
Sea-Bird ECO Triplet BB3W	Backscattering at 440, 532, 630	10
Sea-Bird ECO Triplet BBFL2w	Backscattering at 700 nm Chlorophyll-a fluorescence (EX/EM: 470/695 nm) CDOM fluorescence (EX/EM: 370/460 nm)	10
Satlantic HOCR ICSW	Hyperspectral downwelling irradiance, 180 channels from 300 to 1200 nm	10
Satlantic HOCR R08W	Hyperspectral upwelling radiance, 180 channels from 300 to 1200 nm	10
Sea-Bird ECO PARs	Photosynthetically active radiation (400 to 700 nm)	10

Minaudo, C., Odermatt, D., Bouffard, D., Irani Rahaghi, A., Lavanchy, S., and Wüest, A. (submitted). The imprint of primary production in high-frequency profiles of lake optical properties.

Thetis optical closure logic

Sentinel-3 reflectance validation uncertainties

Irani Rahaghi, A., Minaudo, C., Damm, A., Odermatt, D., in preparation. Optical closure of remote sensing reflectance using automated hyperspectral profiler data.

eawag quatic research 8000

Response to challenges

Rrs uncertainties

Vertical gradients

Cal/val and aquatic science

Lake morphology

Optical closure simulations (and E_d^+ upgrade)

Autonomous IOP measurements

Parameter set serves both tasks and inspires collaboration

Parking at large depth prevents biofouling but is harder to maintain than abovesurface radiometers

LéXPLORE concession is secured until 2027 Thetis research funding until end of year Cal/val measurement protocols are in preparation Collaboration with other Thetis operators is a high priority Efficient up-scaling of technology must be investigated

Thank you for your attention please visit www.datalakes-eawag.ch

