State of Art and future developments on remote sensing for water quantity

In situ calibration and validation of satellite hydrology products

Water-ForCE Workshop, online, 18th May 2021

isardSAT

Research and services provider enterprise in the Earth Observation Field

- Water Level estimation and validation
- Soil Moisture estimation and validation
- Conclusions

Vater Level estimation and validation

Water-ForCE | In situ calibration and validation of satellite products Workshop | Online | 18th May 2021 | 3

• State of the art

Ocean

Inland water bodies

with a scale of several kilometers

Small water bodies width less than 2 km

ater Level estimation and validation

Vater Level estimation and validation

later Level estimation and validation

SAIH Ebro: water levels, river flows, reservoir volumes

sardSA

Vater Level estimation and validation

Vater Level estimation and validation

Ebro Reservoir Width ≈ 1.8km

Average Slope (5 km): 4%

ater Level estimation and validation

Sara

ater Level estimation and validation

Water-ForCE | In situ calibration and validation of satellite products Workshop | Online | 18th May 2021 | 10

ater Level estimation and validation

Reservoir	Width	Track	MAD [m]			
			L2 ocean	L2 OCOG	isardSAT 2-step physical	isardSAT OCOG
Ribarroja	400 m	S3A 242	0.17	0.16	0.18	0.20
		S3B 336	0.20	0.19	0.15	0.18
Mequinenza	600 m	S3A 279	0.47	0.10	0.12	0.11
		S3B 242	0.12	0.09	0.14	0.12

sardSA

Quartly, Graham D., et al. "The roles of the S3MPC: Monitoring, validation and evolution of Sentinel-3 altimetry observations." Remote Sensing 12.11 (2020): 1763. Gao, Q., Makhoul, E., Escorihuela, M. J., Zribi, M., Quintana Seguí, P., García, P., & Roca, M. (2019). Analysis of retrackers' performances and water level retrieval over the ebro river basin using sentinel-3. Remote Sensing, 11(6), 718.

Vater Level estimation and validation

Figure 3. Fully-Focused SAR Power waveforms obtained from a S3A pass over a water channel in Ebre Delta. On-ground surface spacing is set to 0.5m. The central peak corresponds to the channel location and the other four are the replicas located every +/-92m in the along-track direction.

Vater Level estimation and validation

Figure 4. Geolocation of the S3A pass shown in Figure 3. The central peak observed on the *left* plot with latitude 40.7272^o corresponds to the subsatellite track crossing point with the irrigation channel, as shown in *right* plot. The replicas in the along-track direction can be also appreciated.

Data	From surface to root-zone soil moisture derived from L-band MW
Temporal coverage	since 2010
Spatial coverage	Global
Temporal resolution	every 1/2 days
Spatial resolution	1 km
Delivery	WMS, FTP, direct download

sards

High resolution soil moisture, disaggregation with SMOS/SMAP in combination with thermal/optical data S3/MODIS (Merlin et al. 2013, Stefan et al. 2021)

https://accwa.isardsat.space/eo-products/ https://locust-hub-hqfao.hub.arcgis.com/

Soil Moisture estimation and validation

L-band Passive MW SMOS/SMAP/CIMR

- accuracy 0.04 m3/m3
- low spatial resolution 40 km
- high temporal 2/3

O/T Medium Resolution S3/MODIS (1 km, 1 d) or O/T High Posolution LandSat (100 m, 16 d)

O/T High Resolution LandSat (100 m, 16 d)

SM (1 km, 2/3 d) SM (100 m, 16 d)

+ O/T Medium Resolution S3/MODIS (1 km, 1 d) O/T High Resolution LandSat (100 m, 16 d)

L-band Passive MW SMOS/SMAP/CIMR

SM (1 km, 2/3 d) SM (100 m, 16 d)

Water-ForCE | In situ calibration and validation of satellite products Workshop | Online | 18th May 2021 | 16

Continuous measurements

+ 2 demonstrative farms (3 soil moisture profiles: surface, root, infiltration)

Campaign

sard SA

Once a month 2015 SSM (0 – 5 cm) measurements: Irrigated : 4 corn, 4 alfalfa, 4 fruit trees

Dryland: 4 cereal fields

- soil texture, stone percentage, wilting point and field capacity
- Roughness measurements

Soil Moisture estimation and validation

+ O/T Medium Resolution MODIS (1 km, 1 d) O/T High Resolution LandSat (100 m, 16 d)

L-band Passive MW SMOS/SMAP/WCOM

NSSM (1 km, 2/3 d) NSSM (100 m, 16 d)

Merlin et al. 2013 Self-calibrated evaporation-based disaggregation of SMOS soil moisture: An evaluation study at 3 km and 100 m resolution in Catalunya, Spain, RSE Escorihuela and Quintana-Seguí 2016 Comparison of remote sensing and simulated soil moisture datasets in Mediterranean landscapes, RSE

Soil Moisture estimation and validation

Welcome to the Data Hosting Facility of the

International Soil Moisture Network

