Copernicus Evolution - Research for harmonised

Atmospheric correction in the CERTO project

Water Quality Continuum Atmospheric Correction Workshop 20/10/2022

François Steinmetz, HYGEOS

www.certo-project.org

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 870349.

Introduction: the CERTO project

Copernicus Evolution: Research for harmonised Transitional water Observation

- Study and develop harmonized water quality products in transitional waters
- Develop a prototype system designed to be applicable across Copernicus services (Copernicus Marine, Copernicus Climate Change, and Copernicus Land)
- Focus on six case study sites across Europe \rightarrow
- Main components of the project:
 - In-situ data gathering
 - Water optical classification
 - Atmospheric correction study and improvement
 - Develop indicators that are useful to end-users and stakeholders
 - Demonstration to end users
- https://certo-project.org/

Razelm-Sinoe Lagoon, Romania

Elbe Estuary, Germany

The CERTO case study sites

Venice lagoon, Italy

Tamar Estuary, UK

Curonian lagoon, Russia/Lithuania

Tagus Estuary, Portugal

20/10/2022

The Atmospheric Correction WP in CERTO: overview

<u>Objective</u>: evaluate and optimize atmospheric correction in transitional waters, in view of harmonizing the methods from inland to coastal waters (Use of Sentinel-2 MSI and Sentinel-3 OLCI data)

- Evaluation of various atmospheric correction schemes in transitional waters ; selection for prototype development
- Improving atmospheric correction
 - Bathymetry effect detection and correction
 - Improve adjacency effect correction
 - Focus on Polymer improvements
 - ightarrow Involve radiative transfer simulations and in-situ data

In-situ data from CERTO campaigns

+ matchups from the Solar
tracking radiometry platform
being integrated (automated
So-Rad data, PML)

Validation exercise

- First validation conducted in 2020 using Aeronet-OC data from Venise AAOT which showed best performance by Polymer
- Now updated with CERTO campaigns data and PML So-Rad data
- Algorithms:
 - C2RCC
 - Polymer with current CERTO modifications (modifications presented later)
 - ACOLITE
 - iCOR not included in this presentation, to be added for final evaluation
- Insufficient matchups for conclusive results ; historical data are being added to the analysis

OLCI - CERTO campaigns

- Matchups dominated by Venice lagoon
- Best quality by C2RCC
- Underestimation by Polymer

MSI – CERTO campaigns

- Matchups dominated by Venice lagoon
- Best accuracy by ACOLITE
- Best correlation by Polymer

Polymer updates

- Added an uncertainties propagation mechanism:
 - TOA uncertainties, propagated to water reflectance (equivalent to Monte Carlo uncertainties)
 - Uncertainties induced by model inversion
- Water model update: better account for highly turbid waters
 - \rightarrow Switch to increase of mineral particles when chl > 10mg/m3
 - \rightarrow Avoids introducing a third parameter to the water reflectance model
- Added a new first guess: test several points of the cost function instead of a single fixed point
 - ightarrow impact on stability, eg in Curonian lagoon
- Added band 1020 for atmospheric correction (OLCI)

(these updates are not yet publicly released)

Illustration of the Polymer model of water reflectance in « natural colour »

8

Water Quality Continuum Atmospheric Correction Workshop

Impact of Polymer modifications on Curonian lagoon (S3B_OL_1_EFR____20200604T0 90813)

Improved stability

Water Quality Continuum Atmospheric Correction Workshop

Impact of Polymer modifications on Gironde estuary (S3A_OL_1_EFR____20170123T102913)

Reduced the underestimation of (very turbid) water reflectance

20/10/2022

Bathymetry effects (bottom visibility)

- Bottom visibility impacts the observation of water colour
- Depends on the bathymetry, on the tide height, and on the water optical properties
- Can be estimated using multi-temporal and multi-spectral measurements, for clear waters (Wei et al, 2020). Can it be applied to transitional waters as well ?

• **Objectives**:

- 1. Detect and mask out pixels affected by bottom visibility, first in the inter-tidal zone, then in the sub-tidal zone
- 2. If possible, provide bathymetry and seabed albedo

Bathymetry effects visible in the Venice Lagoon

Bathymetry effects

- Generic method for estimating bathymetry effects from Sentinel-2 timeseries. Requires sufficient tidal amplitude and external water level information
- **Bathymetry effect detection** (correlation of reflectance with water level)
- Bathymetry and seabed albedo inversion, assuming spatial homogeneity of water IOPs
- Inversion of spectral seabed albedo and NDVI

Site	Applicability
Curonian lagoon	×
Elbe estuary	\checkmark
Razelm-Sinoe lagoon	×
Tagus estuary	~
Tamar estuary	~
Venice lagoon	\checkmark

Bathymetry effects: Venise Lagoon

0.2

Consistent decoupling between bathymetry and seabed albedo

Bathymetry effects: Venise Lagoon (validation)

Our bathymetry from S2 timeseries

Venice lagoon bathymetry from Zaggia et al 2017

Recommendations: AC for transitional waters

- Good to have consistent methods and open source tools for validation exercises. Support EUMETSAT initiative in this regard.
- Importance of in-situ data in complex waters
- Additionally consider consistency verifications (spatial or temporal features) which do not require in-situ data, in addition to traditional validation:
 - Impact of sun glint
 - Impact of observation geometry
 - Water/atmosphere decoupling

ERTO Copernicus Evolution - Research for harmonised and Transitional water Observation

Thank you

www.certo-project.org

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 870349.